The average size of Ramanujan sums over cubic number fields

被引:1
|
作者
Ma, Jing [1 ]
Sun, Huayan [1 ]
Zhai, Wenguang [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramanujan sum; Cubic field; Exponential sum; FORMULAS;
D O I
10.1007/s10998-022-00507-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a cubic number field. In this paper, we study the Ramanujan sums c(J) (I) , where I and 9 are integral ideals in O-K. The asymptotic behaviour of sums of c(J) (I) over both I and 9 is investigated.
引用
收藏
页码:215 / 231
页数:17
相关论文
共 50 条
  • [41] RAMANUJAN’S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (03): : 69 - 80
  • [42] The Sylvester Theorem and the Rogers-Ramanujan Identities over Totally Real Number Fields
    Jang, Se Wook
    Kim, Byeong Moon
    Kim, Kwang Hoon
    arXiv, 2023,
  • [43] The geometric average size of Selmer groups over function fields
    Landesman, Aaron
    ALGEBRA & NUMBER THEORY, 2021, 15 (03) : 673 - 709
  • [44] ON THE COMPOSITE FIELDS OF 2 CUBIC CYCLIC EXTENSION FIELDS OVER A NUMBER-FIELD
    LAN, YZ
    CHINESE SCIENCE BULLETIN, 1993, 38 (01): : 19 - 22
  • [45] Sums of Kloosterman sums for real quadratic number fields
    Bruggeman, RW
    Miatello, RJ
    Pacharoni, I
    JOURNAL OF NUMBER THEORY, 2003, 99 (01) : 90 - 119
  • [46] Average Size of Ramanujan Sum Associated with Divisor Function
    Li, Xin
    Zhai, Wenguang
    MATHEMATICS, 2025, 13 (05)
  • [47] On a system of norm-equations over cyclic cubic number fields
    Pethö, A
    Zimmer, HG
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 317 - 332
  • [48] CUBIC HOMOGENEOUS POLYNOMIALS OVER PARA-ADIC NUMBER FIELDS
    LEWIS, DJ
    ANNALS OF MATHEMATICS, 1952, 56 (03) : 473 - 478
  • [49] On the cyclic torsion of elliptic curves over cubic number fields (II)
    Wang, Jian
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2019, 31 (03): : 663 - 670
  • [50] Counting rational points over number fields on a singular cubic surface
    Frei, Christopher
    ALGEBRA & NUMBER THEORY, 2013, 7 (06) : 1451 - 1479