The geometric average size of Selmer groups over function fields

被引:3
|
作者
Landesman, Aaron [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Selmer groups; arithmetic statistics; function fields; moduli stacks; ELLIPTIC-CURVES; STABILITY; PENCILS;
D O I
10.2140/ant.2021.15.673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show, in the large q limit, that the average size of n-Selmer groups of elliptic curves of bounded height over F-q(t) is the sum of the divisors of n. As a corollary, again in the large q limit, we deduce that 100% of elliptic curves of bounded height over F-q(t) have rank 0 or 1.
引用
收藏
页码:673 / 709
页数:37
相关论文
共 50 条