Polynomial Szemerédi theorems for countable modules over integral domains and finite fields

被引:0
|
作者
V. Bergelson
A. Leibman
R. McCutcheon
机构
[1] The Ohio State University,Department of Mathematics
[2] University of Memphis,Department of Mathematical Sciences
来源
关键词
Finite Family; Formal Degree; Finite Dimensional Vector Space; Polynomial Versus; Ascend Chain Condition;
D O I
暂无
中图分类号
学科分类号
摘要
Given a pair of vector spacesV andW over a countable fieldF and a probability spaceX, one defines apolynomial measure preserving action ofV onX to be a compositionT o ϕ, where ϕ:V→W is a polynomial mapping andT is a measure preserving action ofW onX. We show that the known structure theory of measure preserving group actions extends to polynomial actions and establish a Furstenberg-style multiple recurrence theorem for such actions. Among the combinatorial corollaries of this result are a polynomial Szemerédi theorem for sets of positive density in finite rank modules over integral domains, as well as the following fact:Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document} be a finite family of polynomials with integer coefficients and zero constant term. For any α>0, there exists N ∈ ℕ such that whenever F is a field with |F|≥N and E ⊆F with |E|/|F|≥α, there exist u∈F, u≠0, and w∈E such that w+ϕ(u)∈E for all ϕ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}.
引用
收藏
页码:243 / 296
页数:53
相关论文
共 50 条