Polynomial Szemerédi theorems for countable modules over integral domains and finite fields

被引:0
|
作者
V. Bergelson
A. Leibman
R. McCutcheon
机构
[1] The Ohio State University,Department of Mathematics
[2] University of Memphis,Department of Mathematical Sciences
来源
关键词
Finite Family; Formal Degree; Finite Dimensional Vector Space; Polynomial Versus; Ascend Chain Condition;
D O I
暂无
中图分类号
学科分类号
摘要
Given a pair of vector spacesV andW over a countable fieldF and a probability spaceX, one defines apolynomial measure preserving action ofV onX to be a compositionT o ϕ, where ϕ:V→W is a polynomial mapping andT is a measure preserving action ofW onX. We show that the known structure theory of measure preserving group actions extends to polynomial actions and establish a Furstenberg-style multiple recurrence theorem for such actions. Among the combinatorial corollaries of this result are a polynomial Szemerédi theorem for sets of positive density in finite rank modules over integral domains, as well as the following fact:Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document} be a finite family of polynomials with integer coefficients and zero constant term. For any α>0, there exists N ∈ ℕ such that whenever F is a field with |F|≥N and E ⊆F with |E|/|F|≥α, there exist u∈F, u≠0, and w∈E such that w+ϕ(u)∈E for all ϕ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}.
引用
收藏
页码:243 / 296
页数:53
相关论文
共 50 条
  • [21] SEMIAMPLE BERTINI THEOREMS OVER FINITE FIELDS
    Erman, Daniel
    Wood, Melanie Matchett
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (01) : 1 - 38
  • [22] BERTINI IRREDUCIBILITY THEOREMS OVER FINITE FIELDS
    Charles, Francois
    Poonen, Bjorn
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (01) : 81 - 94
  • [23] Improved estimates for polynomial Roth type theorems in finite fields
    Dong Dong
    Xiaochun Li
    Will Sawin
    Journal d'Analyse Mathématique, 2020, 141 : 689 - 705
  • [24] IMPROVED ESTIMATES FOR POLYNOMIAL ROTH TYPE THEOREMS IN FINITE FIELDS
    Dong, Dong
    Li, Xiaochun
    Sawin, Will
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02): : 689 - 705
  • [25] Unimodular polynomial matrices over finite fields
    Arora, Akansha
    Ram, Samrith
    Venkateswarlu, Ayineedi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) : 1299 - 1312
  • [26] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    RAMANUJAN JOURNAL, 2018, 46 (03): : 863 - 898
  • [27] Polynomial equations for matrices over finite fields
    Hua, JZ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 59 - 64
  • [28] Dynamics of polynomial maps over finite fields
    José Alves Oliveira
    F. E. Brochero Martínez
    Designs, Codes and Cryptography, 2024, 92 : 1113 - 1125
  • [29] Univariate polynomial factorization over finite fields
    Naudin, P
    Quitte, C
    THEORETICAL COMPUTER SCIENCE, 1998, 191 (1-2) : 1 - 36
  • [30] On the degrees of polynomial divisors over finite fields
    Weingartner, Andreas
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 161 (03) : 469 - 487