Polynomial Szemerédi theorems for countable modules over integral domains and finite fields

被引:0
|
作者
V. Bergelson
A. Leibman
R. McCutcheon
机构
[1] The Ohio State University,Department of Mathematics
[2] University of Memphis,Department of Mathematical Sciences
来源
关键词
Finite Family; Formal Degree; Finite Dimensional Vector Space; Polynomial Versus; Ascend Chain Condition;
D O I
暂无
中图分类号
学科分类号
摘要
Given a pair of vector spacesV andW over a countable fieldF and a probability spaceX, one defines apolynomial measure preserving action ofV onX to be a compositionT o ϕ, where ϕ:V→W is a polynomial mapping andT is a measure preserving action ofW onX. We show that the known structure theory of measure preserving group actions extends to polynomial actions and establish a Furstenberg-style multiple recurrence theorem for such actions. Among the combinatorial corollaries of this result are a polynomial Szemerédi theorem for sets of positive density in finite rank modules over integral domains, as well as the following fact:Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document} be a finite family of polynomials with integer coefficients and zero constant term. For any α>0, there exists N ∈ ℕ such that whenever F is a field with |F|≥N and E ⊆F with |E|/|F|≥α, there exist u∈F, u≠0, and w∈E such that w+ϕ(u)∈E for all ϕ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}.
引用
收藏
页码:243 / 296
页数:53
相关论文
共 50 条
  • [31] Dynamics of polynomial maps over finite fields
    Oliveira, Jose Alves
    Martinez, F. E. Brochero
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1113 - 1125
  • [32] On the polynomial Ramanujan sums over finite fields
    Zhiyong Zheng
    The Ramanujan Journal, 2018, 46 : 863 - 898
  • [33] Complexity of polynomial multiplication over finite fields
    Kaminski, Michael
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 2 - 2
  • [34] On the Dispersions of the Polynomial Maps over Finite Fields
    Schauz, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [35] ON POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    GUNJI, H
    ARNON, D
    MATHEMATICS OF COMPUTATION, 1981, 36 (153) : 281 - 287
  • [36] Unimodular polynomial matrices over finite fields
    Akansha Arora
    Samrith Ram
    Ayineedi Venkateswarlu
    Journal of Algebraic Combinatorics, 2021, 53 : 1299 - 1312
  • [37] Faster Polynomial Multiplication over Finite Fields
    Harvey, David
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL OF THE ACM, 2017, 63 (06)
  • [38] POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS
    REED, IS
    SOLOMON, G
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (02): : 300 - 304
  • [39] Linearized polynomial maps over finite fields
    Berson, Joost
    JOURNAL OF ALGEBRA, 2014, 399 : 389 - 406
  • [40] POLYNOMIAL DEDEKIND DOMAINS WITH FINITE RESIDUE FIELDS OF PRIME CHARACTERISTIC
    Peruginelli, Giulio
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 324 (02) : 333 - 351