Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3

被引:0
|
作者
Antal A. Járai
Frank Redig
机构
[1] Carleton University,Mathematisch Instituut
[2] School of Mathematics and Statistics,undefined
[3] Universiteit Leiden,undefined
来源
关键词
Abelian sandpile model; Wave; Addition operator; Uniform spanning tree; Two-component spanning tree; Loop-erased random walk; Tail triviality; 60K35; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Abelian sandpile model on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} .
引用
收藏
页码:181 / 212
页数:31
相关论文
共 50 条
  • [41] EXACT HEIGHT PROBABILITIES IN THE ABELIAN SANDPILE MODEL
    PRIEZZHEV, VB
    PHYSICA SCRIPTA, 1993, T49B : 663 - 666
  • [42] The Abelian Sandpile Model on a Random Binary Tree
    Redig, F.
    Ruszel, W. M.
    Saada, E.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) : 653 - 677
  • [43] The Abelian Sandpile Model on a Random Binary Tree
    F. Redig
    W. M. Ruszel
    E. Saada
    Journal of Statistical Physics, 2012, 147 : 653 - 677
  • [44] The Monodromy matrices of the XXZ model in the infinite volume limit
    Miwa, T
    Weston, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7509 - 7523
  • [45] THE INFINITE VOLUME LIMIT OF FORD'S ALPHA MODEL
    Stefansson, Sigurdur Orn
    ACTA PHYSICA POLONICA B, 2009, : 555 - 562
  • [46] Distribution of heights in the Abelian sandpile model on the Husimi lattice
    Papoyan, VV
    Shcherbakov, RR
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1996, 4 (01): : 105 - 110
  • [47] Logarithmic scaling for height variables in the Abelian sandpile model
    Piroux, G
    Ruelle, P
    PHYSICS LETTERS B, 2005, 607 (1-2) : 188 - 196
  • [48] An NP-complete Problem for the Abelian Sandpile Model
    Schulz, Matthias
    COMPLEX SYSTEMS, 2007, 17 (01): : 17 - 28
  • [49] NUMERICAL STUDY OF WAVES OF TOPPLINGS IN THE ABELIAN SANDPILE MODEL
    KTITAREV, DV
    PAPOYAN, VV
    PHYSICS LETTERS A, 1994, 196 (1-2) : 52 - 54
  • [50] Exact integration of height probabilities in the Abelian Sandpile model
    Caracciolo, Sergio
    Sportiello, Andrea
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,