Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3

被引:0
|
作者
Antal A. Járai
Frank Redig
机构
[1] Carleton University,Mathematisch Instituut
[2] School of Mathematics and Statistics,undefined
[3] Universiteit Leiden,undefined
来源
关键词
Abelian sandpile model; Wave; Addition operator; Uniform spanning tree; Two-component spanning tree; Loop-erased random walk; Tail triviality; 60K35; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Abelian sandpile model on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} .
引用
收藏
页码:181 / 212
页数:31
相关论文
共 50 条
  • [31] Multipoint correlators in the Abelian sandpile model
    Poncelet, Adrien
    Ruelle, Philippe
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [32] The Upper Critical Dimension of the Abelian Sandpile Model
    V. B. Priezzhev
    Journal of Statistical Physics, 2000, 98 : 667 - 684
  • [33] Conservation laws for strings in the Abelian Sandpile Model
    Caracciolo, S.
    Paoletti, G.
    Sportiello, A.
    EPL, 2010, 90 (06)
  • [34] Logarithmic conformal invariance in the Abelian sandpile model
    Ruelle, Philippe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (49)
  • [35] Patterned and disordered continuous Abelian sandpile model
    Azimi-Tafreshi, N.
    Moghimi-Araghi, S.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [36] Multiple and inverse topplings in the Abelian Sandpile Model
    Caracciolo, S.
    Paoletti, G.
    Sportiello, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 212 (01): : 23 - 44
  • [37] Boundary height fields in the Abelian sandpile model
    Piroux, G
    Ruelle, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (07): : 1451 - 1472
  • [38] The upper critical dimension of the Abelian Sandpile Model
    Priezzhev, VB
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 667 - 684
  • [39] Multiple and inverse topplings in the Abelian Sandpile Model
    S. Caracciolo
    G. Paoletti
    A. Sportiello
    The European Physical Journal Special Topics, 2012, 212 : 23 - 44
  • [40] Exact height probabilities in the Abelian sandpile model
    Priezzhev, V.B.
    Physica Scripta T, 1993, T49A