Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3

被引:0
|
作者
Antal A. Járai
Frank Redig
机构
[1] Carleton University,Mathematisch Instituut
[2] School of Mathematics and Statistics,undefined
[3] Universiteit Leiden,undefined
来源
关键词
Abelian sandpile model; Wave; Addition operator; Uniform spanning tree; Two-component spanning tree; Loop-erased random walk; Tail triviality; 60K35; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Abelian sandpile model on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} .
引用
收藏
页码:181 / 212
页数:31
相关论文
共 50 条
  • [21] A Stochastic Variant of the Abelian Sandpile Model
    Seungki Kim
    Yuntao Wang
    Journal of Statistical Physics, 2020, 178 : 711 - 724
  • [22] Scaling behavior of the Abelian sandpile model
    Drossel, Barbara
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (03):
  • [23] INVERSE AVALANCHES IN THE ABELIAN SANDPILE MODEL
    DHAR, D
    MANNA, SS
    PHYSICAL REVIEW E, 1994, 49 (04): : 2684 - 2687
  • [24] Wind on the boundary for the Abelian sandpile model
    Ruelle, Philippe
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [25] A Stochastic Variant of the Abelian Sandpile Model
    Kim, Seungki
    Wang, Yuntao
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (03) : 711 - 724
  • [26] HEIGHT CORRELATIONS IN THE ABELIAN SANDPILE MODEL
    MAJUMDAR, SN
    DHAR, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07): : L357 - L362
  • [27] Avalanche prediction in Abelian sandpile model
    Dorso, CO
    Dadamia, D
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 308 (1-4) : 179 - 191
  • [28] ABELIAN SANDPILE MODEL ON THE BETHE LATTICE
    DHAR, D
    MAJUMDAR, SN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19): : 4333 - 4350
  • [29] The Abelian sandpile model on the honeycomb lattice
    Azimi-Tafreshi, N.
    Dashti-Naserabadi, H.
    Moghimi-Araghi, S.
    Ruelle, P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [30] Scaling behavior of the Abelian sandpile model
    Drossel, B
    PHYSICAL REVIEW E, 2000, 61 (03): : R2168 - R2171