NUMERICAL STUDY OF WAVES OF TOPPLINGS IN THE ABELIAN SANDPILE MODEL

被引:0
|
作者
KTITAREV, DV [1 ]
PAPOYAN, VV [1 ]
机构
[1] DUBNA JOINT NUCL RES INST,BOGOLIUBOV LAB THEORET PHYS,DUBNA 141980,RUSSIA
关键词
D O I
10.1016/0375-9601(94)91043-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically the asymptotics of size distributions for avalanche waves in the 2D Abelian sandpile model. We find the estimates of exponents for five families of waves, including the first and the last waves in an avalanche. The size distributions of waves of a general form and boundary avalanches are also investigated. The obtained results are in agreement with theoretical predictions and numerical simulations performed by other authors.
引用
收藏
页码:52 / 54
页数:3
相关论文
共 50 条
  • [1] WAVES OF TOPPLINGS IN AN ABELIAN SANDPILE
    IVASHKEVICH, EV
    KTITAREV, DV
    PRIEZZHEV, VB
    PHYSICA A, 1994, 209 (3-4): : 347 - 360
  • [2] Multiple and inverse topplings in the Abelian Sandpile Model
    Caracciolo, S.
    Paoletti, G.
    Sportiello, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 212 (01): : 23 - 44
  • [3] Multiple and inverse topplings in the Abelian Sandpile Model
    S. Caracciolo
    G. Paoletti
    A. Sportiello
    The European Physical Journal Special Topics, 2012, 212 : 23 - 44
  • [4] Avalanches and waves in the Abelian sandpile model
    Paczuski, M
    Boettcher, S
    PHYSICAL REVIEW E, 1997, 56 (04) : R3745 - R3748
  • [5] ABELIAN SANDPILE MODEL
    CHAU, HF
    PHYSICAL REVIEW E, 1993, 47 (06) : R3815 - R3817
  • [6] ABELIAN SANDPILE MODEL - COMMENT
    PRASAD, MA
    BHATIA, DP
    ARORA, D
    PHYSICAL REVIEW E, 1994, 49 (02): : 1779 - 1780
  • [7] On the predictability of the abelian sandpile model
    Andres Montoya, J.
    Mejia, Carolina
    NATURAL COMPUTING, 2022, 21 (01) : 69 - 79
  • [8] GENERALIZED ABELIAN SANDPILE MODEL
    CHAU, HF
    CHENG, KS
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) : 5109 - 5117
  • [9] On the predictability of the abelian sandpile model
    J. Andres Montoya
    Carolina Mejia
    Natural Computing, 2022, 21 : 69 - 79
  • [10] THE SPECTRUM OF THE ABELIAN SANDPILE MODEL
    Hough, Robert
    Son, Hyojeong
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 441 - 469