GENERALIZED ABELIAN SANDPILE MODEL

被引:7
|
作者
CHAU, HF [1 ]
CHENG, KS [1 ]
机构
[1] UNIV HONG KONG,DEPT PHYS,HONG KONG,HONG KONG
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.530345
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A sufficient condition is presented herein for which the particle addition operations commute in the eventual phase space of a general cellular automata-type of sandpile model. The commutative nature of the particle addition operations results from the reduction of the eventual phase space. It suggests that a large number of self-organized critical models can be reduced to the Abelian sandpile if only the long term behavior of these systems is considered.
引用
收藏
页码:5109 / 5117
页数:9
相关论文
共 50 条
  • [1] GENERALIZED ABELIAN SANDPILE MODEL
    CHAU, HF
    PHYSICA A, 1994, 205 (1-3): : 292 - 298
  • [2] Height Probabilities in the Abelian Sandpile Model on the Generalized Trees
    Wu, Xiaoxia
    Zhang, Lianzhu
    Dong, Hawei
    Qin, Chengfu
    ARS COMBINATORIA, 2014, 117 : 191 - 216
  • [3] ABELIAN SANDPILE MODEL
    CHAU, HF
    PHYSICAL REVIEW E, 1993, 47 (06) : R3815 - R3817
  • [4] Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice
    Chen, Haiyan
    Zhang, Fuji
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [5] ABELIAN SANDPILE MODEL - COMMENT
    PRASAD, MA
    BHATIA, DP
    ARORA, D
    PHYSICAL REVIEW E, 1994, 49 (02): : 1779 - 1780
  • [6] On the predictability of the abelian sandpile model
    Andres Montoya, J.
    Mejia, Carolina
    NATURAL COMPUTING, 2022, 21 (01) : 69 - 79
  • [7] On the predictability of the abelian sandpile model
    J. Andres Montoya
    Carolina Mejia
    Natural Computing, 2022, 21 : 69 - 79
  • [8] THE SPECTRUM OF THE ABELIAN SANDPILE MODEL
    Hough, Robert
    Son, Hyojeong
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 441 - 469
  • [9] Avalanches and waves in the Abelian sandpile model
    Paczuski, M
    Boettcher, S
    PHYSICAL REVIEW E, 1997, 56 (04) : R3745 - R3748
  • [10] A Stochastic Variant of the Abelian Sandpile Model
    Seungki Kim
    Yuntao Wang
    Journal of Statistical Physics, 2020, 178 : 711 - 724