Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3

被引:0
|
作者
Antal A. Járai
Frank Redig
机构
[1] Carleton University,Mathematisch Instituut
[2] School of Mathematics and Statistics,undefined
[3] Universiteit Leiden,undefined
来源
关键词
Abelian sandpile model; Wave; Addition operator; Uniform spanning tree; Two-component spanning tree; Loop-erased random walk; Tail triviality; 60K35; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Abelian sandpile model on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d}$$\end{document} .
引用
收藏
页码:181 / 212
页数:31
相关论文
共 50 条