The Infinite Volume Limit of Dissipative Abelian Sandpiles

被引:0
|
作者
C. Maes
F. Redig
E. Saada
机构
[1] Instituut voor Theoretische Fysica,Faculteit Wiskunde en Informatica
[2] Technische Universiteit Eindhoven,Laboratoire de Mathématiques Raphaël Salem
[3] The Netherlands and EURANDOM,undefined
[4] Université de Rouen,undefined
[5] site Colbert,undefined
[6] CNRS,undefined
来源
关键词
Uniform Distribution; Abelian Group; Stationary Measure; Markov Process; Thermodynamic Limit;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the thermodynamic limit of the stationary measures of the Bak-Tang-Wiesenfeld sandpile model with a dissipative toppling matrix (sand grains may disappear at each toppling). We prove uniqueness and mixing properties of this measure and we obtain an infinite volume ergodic Markov process leaving it invariant. We show how to extend the Dhar formalism of the ‘abelian group of toppling operators’ to infinite volume in order to obtain a compact abelian group with a unique Haar measure representing the uniform distribution over the recurrent configurations that create finite avalanches
引用
收藏
页码:395 / 417
页数:22
相关论文
共 50 条
  • [1] The infinite volume limit of dissipative Abelian sandpiles
    Maes, C
    Redig, F
    Saada, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 244 (02) : 395 - 417
  • [2] Dissipative Abelian sandpiles and random walks
    Vanderzande, C
    Daerden, F
    PHYSICAL REVIEW E, 2001, 63 (03): : 030301 - 030301
  • [3] Infinite Volume Limit for the Stationary Distribution of Abelian Sandpile Models
    S.R. Athreya
    A.A Járai
    Communications in Mathematical Physics, 2006, 264 : 843 - 843
  • [4] Infinite volume limit for the stationary distribution of Abelian sandpile models
    Athreya, SR
    Járai, AA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (01) : 197 - 213
  • [5] Infinite Volume Limit for the Stationary Distribution of Abelian Sandpile Models
    Siva R. Athreya
    Antal A. Járai
    Communications in Mathematical Physics, 2004, 249 : 197 - 213
  • [6] Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3
    Antal A. Járai
    Frank Redig
    Probability Theory and Related Fields, 2008, 141 : 181 - 212
  • [7] Infinite volume limit of the Abelian sandpile model in dimensions d≥3
    Jarai, Antal A.
    Redig, Frank
    PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (1-2) : 181 - 212
  • [8] Abelian sandpiles on cylinders
    Eckmann, Jean-Pierre
    Nagnibeda, Tatiana
    Perriard, Aymeric
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (17)
  • [9] Abelian Sandpiles and the Harmonic Model
    Klaus Schmidt
    Evgeny Verbitskiy
    Communications in Mathematical Physics, 2009, 292 : 721 - 759
  • [10] Abelian Sandpiles and the Harmonic Model
    Schmidt, Klaus
    Verbitskiy, Evgeny
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (03) : 721 - 759