The Infinite Volume Limit of Dissipative Abelian Sandpiles

被引:0
|
作者
C. Maes
F. Redig
E. Saada
机构
[1] Instituut voor Theoretische Fysica,Faculteit Wiskunde en Informatica
[2] Technische Universiteit Eindhoven,Laboratoire de Mathématiques Raphaël Salem
[3] The Netherlands and EURANDOM,undefined
[4] Université de Rouen,undefined
[5] site Colbert,undefined
[6] CNRS,undefined
来源
关键词
Uniform Distribution; Abelian Group; Stationary Measure; Markov Process; Thermodynamic Limit;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the thermodynamic limit of the stationary measures of the Bak-Tang-Wiesenfeld sandpile model with a dissipative toppling matrix (sand grains may disappear at each toppling). We prove uniqueness and mixing properties of this measure and we obtain an infinite volume ergodic Markov process leaving it invariant. We show how to extend the Dhar formalism of the ‘abelian group of toppling operators’ to infinite volume in order to obtain a compact abelian group with a unique Haar measure representing the uniform distribution over the recurrent configurations that create finite avalanches
引用
收藏
页码:395 / 417
页数:22
相关论文
共 50 条
  • [41] Average height for Abelian sandpiles and the looping constant on Sierpiński graphs
    Heizmann, Nico
    Kaiser, Robin
    Sava-Huss, Ecaterina
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (05):
  • [42] SCALAR QUANTUM ELECTRODYNAMICS ON LATTICE CORRELATION INEQUALITIES AND INFINITE VOLUME LIMIT
    DEANGELIS, GF
    DEFALCO, D
    GUERRA, F
    PHYSICS LETTERS B, 1977, 68 (03) : 255 - 257
  • [43] INFINITE VOLUME, CONTINUUM-LIMIT OF VALENCE APPROXIMATION HADRON MASSES
    BUTLER, F
    CHEN, H
    SEXTON, J
    VACCARINO, A
    WEINGARTEN, D
    NUCLEAR PHYSICS B, 1993, : 377 - 380
  • [44] UNIQUENESS OF ENERGY DENSITY IN INFINITE VOLUME LIMIT FOR QUANTUM FIELD MODELS
    OSTERWALDER, K
    SCHRADER, R
    HELVETICA PHYSICA ACTA, 1972, 45 (05): : 746 - 754
  • [45] ON THE INFINITE VOLUME LIMIT OF THE STRONGLY COUPLED YUKAWA-2 MODEL
    BATTLE, GA
    ROSEN, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (04) : 770 - 776
  • [46] Universality classes and crossover behaviors in non-Abelian directed sandpiles
    Jo, Hang-Hyun
    Ha, Meesoon
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [47] The quasi–abelian limit
    H.M. Fried
    Y. Gabellini
    J. Avan
    The European Physical Journal C - Particles and Fields, 2000, 13 : 699 - 709
  • [48] On abelian saturated infinite words
    Avgustinovich, Sergey
    Cassaigne, Julien
    Karhumaki, Juhani
    Puzynina, Svetlana
    Saarela, Aleksi
    THEORETICAL COMPUTER SCIENCE, 2019, 792 : 154 - 160
  • [49] ABELIAN FACTORIZATIONS OF INFINITE GROUPS
    AMBERG, B
    MATHEMATISCHE ZEITSCHRIFT, 1971, 123 (03) : 201 - &
  • [50] Abelian antipowers in infinite words
    Fici, Gabriele
    Postic, Mickael
    Silva, Manuel
    ADVANCES IN APPLIED MATHEMATICS, 2019, 108 : 67 - 78