Abelian antipowers in infinite words

被引:3
|
作者
Fici, Gabriele [1 ]
Postic, Mickael [2 ]
Silva, Manuel [3 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Palermo, Italy
[2] Univ Claude Bernard Lyon 1, Inst Camille Jordan, Lyon, France
[3] Univ Nova Lisboa, Fac Ciencias & Tecnol, Lisbon, Portugal
关键词
Abelian antipower; k-antipower; Abelian complexity; Paperfolding word; Sierpifiski word; COMPLEXITY; POWERS;
D O I
10.1016/j.aam.2019.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An abelian antipower of order k (or simply an abelian k-antipower) is a concatenation of k consecutive words of the same length having pairwise distinct Parikh vectors. This definition generalizes to the abelian setting the notion of a k-antipower, as introduced in Fici et al. (2018) [7], that is a concatenation of k pairwise distinct words of the same length. We aim to study whether a word contains abelian k-antipowers for arbitrarily large k. S. Holub proved that all paperfolding words contain abelian powers of every order (Holub, 2013 [8]). We show that they also contain abelian antipowers of every order. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 78
页数:12
相关论文
共 50 条
  • [1] On abelian saturated infinite words
    Avgustinovich, Sergey
    Cassaigne, Julien
    Karhumaki, Juhani
    Puzynina, Svetlana
    Saarela, Aleksi
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 792 : 154 - 160
  • [2] New bounds on antipowers in words
    Fleischer, Lukas
    Riasat, Samin
    Shallit, Jeffrey
    [J]. INFORMATION PROCESSING LETTERS, 2020, 164
  • [3] Weak Abelian Periodicity of Infinite Words
    Avgustinovich, Sergey
    Puzynina, Svetlana
    [J]. THEORY OF COMPUTING SYSTEMS, 2016, 59 (02) : 161 - 179
  • [4] Abelian closures of infinite binary words
    Puzynina, Svetlana
    Whiteland, Markus A.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 185
  • [5] Weak Abelian Periodicity of Infinite Words
    Sergey Avgustinovich
    Svetlana Puzynina
    [J]. Theory of Computing Systems, 2016, 59 : 161 - 179
  • [6] On a generalization of Abelian equivalence and complexity of infinite words
    Karhumaki, Juhani
    Saarela, Aleksi
    Zamboni, Luca Q.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (08) : 2189 - 2206
  • [7] Abelian Complexity and Frequencies of Letters in Infinite Words
    Cassaigne, Julien
    Kabore, Idrissa
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2016, 27 (05) : 631 - 649
  • [8] Antipowers in Uniform Morphic Words and the Fibonacci Word
    Garg, Swapnil
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (03):
  • [9] On abelian closures of infinite non-binary words
    Karhumaki, Juhani
    Puzynina, Svetlana
    Whiteland, Markus A.
    [J]. DISCRETE MATHEMATICS, 2024, 347 (09)
  • [10] Another generalization of abelian equivalence: Binomial complexity of infinite words
    Rigo, M.
    Salimov, P.
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 601 : 47 - 57