Antipowers in Uniform Morphic Words and the Fibonacci Word

被引:0
|
作者
Garg, Swapnil [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
antipower; Fibonacci word; morphic word; ANTI-POWERS;
D O I
10.46298/DMTCS.7134
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Fici, Restivo, Silva, and Zamboni define a k-antipower to be a word composed of k pairwise distinct, concatenated words of equal length. Berger and Defant conjecture that for any sufficiently well-behaved aperiodic morphic word w, there exists a constant c such that for any k and any index i, a k-antipower with block length at most ck starts at the i-th position of w. They prove their conjecture in the case of binary words, and we extend their result to alphabets of arbitrary finite size and characterize those words for which the result does not hold. We also prove their conjecture in the specific case of the Fibonacci word.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Morphic words, Beatty sequences and integer images of the Fibonacci language
    Dekking, Michel
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 809 : 407 - 417
  • [2] Computing abelian complexity of binary uniform morphic words
    Blanchet-Sadri, F.
    Seita, Daniel
    Wise, David
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 640 : 41 - 51
  • [3] New bounds on antipowers in words
    Fleischer, Lukas
    Riasat, Samin
    Shallit, Jeffrey
    [J]. INFORMATION PROCESSING LETTERS, 2020, 164
  • [4] Abelian antipowers in infinite words
    Fici, Gabriele
    Postic, Mickael
    Silva, Manuel
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2019, 108 : 67 - 78
  • [5] SOME PROPERTIES OF THE SINGULAR WORDS OF THE FIBONACCI WORD
    WEN, ZX
    WEN, ZY
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (06) : 587 - 598
  • [6] Fibonacci word patterns in two-way infinite Fibonacci words
    Chuan, Wai-Fong
    Liao, Fang-Yi
    Ho, Hui-Ling
    Yu, Fei
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 437 : 69 - 81
  • [7] On the Periodicity of Morphic Words
    Halava, Vesa
    Harju, Tero
    Karki, Tomi
    Rigo, Michel
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, 2010, 6224 : 209 - +
  • [8] Periodicity of Morphic Words
    Mitrofanov I.V.
    [J]. Journal of Mathematical Sciences, 2015, 206 (6) : 679 - 687
  • [9] On the simplification of infinite morphic words
    Honkala, Juha
    [J]. Theoretical Computer Science, 2009, 410 (8-10) : 997 - 1000
  • [10] A REMARK ON MORPHIC STURMIAN WORDS
    BERSTEL, J
    SEEBOLD, P
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1994, 28 (3-4): : 255 - 263