Weak Abelian Periodicity of Infinite Words

被引:0
|
作者
Sergey Avgustinovich
Svetlana Puzynina
机构
[1] Sobolev Institute of Mathematics,LIP, École Normale Supérieure de Lyon
[2] Université de Lyon,undefined
来源
关键词
Infinite word; Abelian equivalence; Periodicity; Letter frequency; Fixed points of morphisms; Subshifts;
D O I
暂无
中图分类号
学科分类号
摘要
An infinite word is called weak abelian periodic if it can be represented as an infinite concatenation of finite words with identical frequencies of letters. In the paper we undertake a general study of the weak abelian periodicity property. We consider its relation with the notions of balance and letter frequency, and study operations preserving weak abelian periodicity. We establish necessary and sufficient conditions for the weak abelian periodicity of fixed points of uniform binary morphisms. Finally, we discuss weak abelian periodicity in minimal subshifts.
引用
收藏
页码:161 / 179
页数:18
相关论文
共 50 条
  • [1] Weak Abelian Periodicity of Infinite Words
    Avgustinovich, Sergey
    Puzynina, Svetlana
    [J]. THEORY OF COMPUTING SYSTEMS, 2016, 59 (02) : 161 - 179
  • [2] DECIDABILITY OF PERIODICITY FOR INFINITE WORDS
    PANSIOT, JJ
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1986, 20 (01): : 43 - 46
  • [3] On abelian saturated infinite words
    Avgustinovich, Sergey
    Cassaigne, Julien
    Karhumaki, Juhani
    Puzynina, Svetlana
    Saarela, Aleksi
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 792 : 154 - 160
  • [4] Abelian antipowers in infinite words
    Fici, Gabriele
    Postic, Mickael
    Silva, Manuel
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2019, 108 : 67 - 78
  • [5] Abelian closures of infinite binary words
    Puzynina, Svetlana
    Whiteland, Markus A.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 185
  • [6] A characterization of periodicity of bi-infinite words
    Harju, T
    Lepistö, A
    Nowotka, D
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 347 (1-2) : 419 - 422
  • [7] On a generalization of Abelian equivalence and complexity of infinite words
    Karhumaki, Juhani
    Saarela, Aleksi
    Zamboni, Luca Q.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (08) : 2189 - 2206
  • [8] Abelian Complexity and Frequencies of Letters in Infinite Words
    Cassaigne, Julien
    Kabore, Idrissa
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2016, 27 (05) : 631 - 649
  • [9] Recurrence and periodicity in infinite words from local periods
    Duval, JP
    Mignosi, F
    Restivo, A
    [J]. THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) : 269 - 284
  • [10] On periodicity of generalized two-dimensional infinite words
    Puzynina, S. A.
    [J]. INFORMATION AND COMPUTATION, 2009, 207 (11) : 1315 - 1328