The Infinite Volume Limit of Dissipative Abelian Sandpiles

被引:0
|
作者
C. Maes
F. Redig
E. Saada
机构
[1] Instituut voor Theoretische Fysica,Faculteit Wiskunde en Informatica
[2] Technische Universiteit Eindhoven,Laboratoire de Mathématiques Raphaël Salem
[3] The Netherlands and EURANDOM,undefined
[4] Université de Rouen,undefined
[5] site Colbert,undefined
[6] CNRS,undefined
来源
关键词
Uniform Distribution; Abelian Group; Stationary Measure; Markov Process; Thermodynamic Limit;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the thermodynamic limit of the stationary measures of the Bak-Tang-Wiesenfeld sandpile model with a dissipative toppling matrix (sand grains may disappear at each toppling). We prove uniqueness and mixing properties of this measure and we obtain an infinite volume ergodic Markov process leaving it invariant. We show how to extend the Dhar formalism of the ‘abelian group of toppling operators’ to infinite volume in order to obtain a compact abelian group with a unique Haar measure representing the uniform distribution over the recurrent configurations that create finite avalanches
引用
收藏
页码:395 / 417
页数:22
相关论文
共 50 条
  • [21] Relevance of Abelian Symmetry and Stochasticity in Directed Sandpiles
    Jo, Hang-Hyun
    Ha, Meesoon
    PHYSICAL REVIEW LETTERS, 2008, 101 (21)
  • [22] Abelian sandpiles on Sierpiński gasket graphs
    Kaiser, Robin
    Sava-Huss, Ecaterina
    Wang, Yuwen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [23] Hydrodynamic limit for a nongradient system in infinite volume
    Perrut, A
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) : 227 - 253
  • [24] Scaling limit of the odometer in divisible sandpiles
    Cipriani, Alessandra
    Hazra, Rajat Subhra
    Ruszel, Wioletta M.
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (3-4) : 829 - 868
  • [25] Scaling limit of the odometer in divisible sandpiles
    Alessandra Cipriani
    Rajat Subhra Hazra
    Wioletta M. Ruszel
    Probability Theory and Related Fields, 2018, 172 : 829 - 868
  • [26] Loss of criticality in the avalanche statistics of sandpiles with dissipative sites
    Paguirigan, Antonino A., Jr.
    Monterola, Christopher P.
    Batac, Rene C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 785 - 793
  • [27] TOPPLING DISTRIBUTIONS IN ONE-DIMENSIONAL ABELIAN SANDPILES
    RUELLE, P
    SEN, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (22): : L1257 - L1264
  • [28] The Monodromy matrices of the XXZ model in the infinite volume limit
    Miwa, T
    Weston, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7509 - 7523
  • [29] Volume derivatives of the Gruneisen parameter in the limit of infinite pressure
    Dwivedi, A.
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (01) : 114 - 116
  • [30] Infinite Volume Limit for Correlation Functions in the Dipole Gas
    Tuan Minh Le
    ANNALES HENRI POINCARE, 2016, 17 (12): : 3533 - 3575