The Infinite Volume Limit of Dissipative Abelian Sandpiles

被引:0
|
作者
C. Maes
F. Redig
E. Saada
机构
[1] Instituut voor Theoretische Fysica,Faculteit Wiskunde en Informatica
[2] Technische Universiteit Eindhoven,Laboratoire de Mathématiques Raphaël Salem
[3] The Netherlands and EURANDOM,undefined
[4] Université de Rouen,undefined
[5] site Colbert,undefined
[6] CNRS,undefined
来源
关键词
Uniform Distribution; Abelian Group; Stationary Measure; Markov Process; Thermodynamic Limit;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the thermodynamic limit of the stationary measures of the Bak-Tang-Wiesenfeld sandpile model with a dissipative toppling matrix (sand grains may disappear at each toppling). We prove uniqueness and mixing properties of this measure and we obtain an infinite volume ergodic Markov process leaving it invariant. We show how to extend the Dhar formalism of the ‘abelian group of toppling operators’ to infinite volume in order to obtain a compact abelian group with a unique Haar measure representing the uniform distribution over the recurrent configurations that create finite avalanches
引用
收藏
页码:395 / 417
页数:22
相关论文
共 50 条