Comparison and vanishing theorems for Kähler manifolds

被引:0
|
作者
Lei Ni
Fangyang Zheng
机构
[1] University of California,Department of Mathematics
[2] San Diego,Department of Mathematics
[3] The Ohio State University,undefined
[4] Zhejiang Normal University,undefined
来源
Calculus of Variations and Partial Differential Equations | 2018年 / 57卷
关键词
Primary 53C55; 32Q15; Secondary 32Q10; 32Q40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider orthogonal Ricci curvature Ric⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric^{\perp }$$\end{document} for Kähler manifolds, which is a curvature condition closely related to Ricci curvature and holomorphic sectional curvature. We prove comparison theorems and a vanishing theorem related to these curvature conditions, and construct various examples to illustrate subtle relationship among them. As a consequence of the vanishing theorem, we show that any compact Kähler manifold with positive orthogonal Ricci curvature must be projective. This result complements a recent result of Yang (RC-positivity, rational connectedness, and Yau’s conjecture. arXiv:1708.06713) on the projectivity under the positivity of holomorphic sectional curvature. The simply-connectedness is shown when the complex dimension is smaller than five. Further study of compact Kähler manifolds with Ric⊥>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric^{\perp }>0$$\end{document} is carried in Ni et al. (Manifolds with positive orthogonal Ricci curvature. arXiv:1806.10233).
引用
收藏
相关论文
共 50 条
  • [31] Compactness Theorems of Extremal-Kähler Manifolds with Positive First Chern Class
    Shu-Cheng Chang
    Annals of Global Analysis and Geometry, 1999, 17 : 267 - 288
  • [32] VANISHING THEOREMS FOR COMPACT HESSIAN MANIFOLDS
    SHIMA, H
    ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) : 183 - 205
  • [33] RIGIDITY THEOREMS OF COMPLETE K?HLER-EINSTEIN MANIFOLDS AND COMPLEX SPACE FORMS
    种田
    东瑜昕
    林和子
    任益斌
    Acta Mathematica Scientia, 2019, 39 (02) : 339 - 356
  • [34] Rigidity Theorems of Complete Kähler-Einstein Manifolds and Complex Space Forms
    Tian Chong
    Yuxin Dong
    Hezi Lin
    Yibin Ren
    Acta Mathematica Scientia, 2019, 39 : 339 - 356
  • [35] Hyperkähler cones and instantons on quaternionic Kähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annals of Global Analysis and Geometry, 2020, 58 : 291 - 323
  • [36] Totally geodesic immersions of Kähler manifolds and Kähler Frenet curves
    Sadahiro Maeda
    Hiromasa Tanabe
    Mathematische Zeitschrift, 2006, 252 : 787 - 795
  • [37] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [38] Hamiltonian mechanics on Kähler manifolds
    Rong-ye Zhang
    Applied Mathematics and Mechanics, 2006, 27 : 353 - 362
  • [39] A note on special Kähler manifolds
    Zhiqin Lu
    Mathematische Annalen, 1999, 313 : 711 - 713
  • [40] Core sets in K?hler manifolds
    Gogus, Nihat Gokhan
    Gunyuz, Ozan
    Yazici, Ozcan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)