Core sets in K?hler manifolds

被引:1
|
作者
Gogus, Nihat Gokhan [1 ]
Gunyuz, Ozan [1 ]
Yazici, Ozcan [2 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[2] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkiye
关键词
m-Subharmonic function; Pseudoconcavity; Pseudoconvexity; Core;
D O I
10.1016/j.jmaa.2023.127175
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primary objective of this paper is to study core sets in the setting of m-subharmonic functions on the class of (non-compact) Kahler manifolds. Core sets are investigated in different aspects by considering various classes of plurisubharmonic functions. One of the crucial concepts in studying the structure of this kind of sets is the pseudoconcavity. In a more general way, we will have the structure of core defined with respect to the m-subharmonic functions, which we call m-core in our setting, in terms of m-pseudoconcave sets. In the context of m-subharmonic functions, we define m-harmonic functions and show that, in Cn (n > 2) and more generally in any Kahler manifold of dimension at least 2, m-harmonic functions are pluriharmonic functions for m > 2. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    Communications in Mathematical Physics, 2013, 324 : 637 - 655
  • [2] On Certain Kähler Quotients of Quaternionic Kähler Manifolds
    V. Cortés
    J. Louis
    P. Smyth
    H. Triendl
    Communications in Mathematical Physics, 2013, 317 : 787 - 816
  • [3] On isometries of Kähler manifolds
    Róbert Szőke
    Acta Mathematica Hungarica, 2006, 111 : 77 - 79
  • [4] Special Kähler Manifolds
    Daniel S. Freed
    Communications in Mathematical Physics, 1999, 203 : 31 - 52
  • [5] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [6] Hyperkähler cones and instantons on quaternionic Kähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annals of Global Analysis and Geometry, 2020, 58 : 291 - 323
  • [7] Totally geodesic immersions of Kähler manifolds and Kähler Frenet curves
    Sadahiro Maeda
    Hiromasa Tanabe
    Mathematische Zeitschrift, 2006, 252 : 787 - 795
  • [8] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [9] Hyper-Kähler Manifolds
    Olivier Debarre
    Milan Journal of Mathematics, 2022, 90 : 305 - 387
  • [10] Hypercomplex structures on Kähler manifolds
    M. Verbitsky
    Geometric & Functional Analysis GAFA, 2005, 15 : 1275 - 1283