Core sets in K?hler manifolds

被引:1
|
作者
Gogus, Nihat Gokhan [1 ]
Gunyuz, Ozan [1 ]
Yazici, Ozcan [2 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[2] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkiye
关键词
m-Subharmonic function; Pseudoconcavity; Pseudoconvexity; Core;
D O I
10.1016/j.jmaa.2023.127175
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primary objective of this paper is to study core sets in the setting of m-subharmonic functions on the class of (non-compact) Kahler manifolds. Core sets are investigated in different aspects by considering various classes of plurisubharmonic functions. One of the crucial concepts in studying the structure of this kind of sets is the pseudoconcavity. In a more general way, we will have the structure of core defined with respect to the m-subharmonic functions, which we call m-core in our setting, in terms of m-pseudoconcave sets. In the context of m-subharmonic functions, we define m-harmonic functions and show that, in Cn (n > 2) and more generally in any Kahler manifold of dimension at least 2, m-harmonic functions are pluriharmonic functions for m > 2. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The energy of a Kähler class on admissible manifolds
    Santiago R. Simanca
    Christina Tønnesen-Friedman
    Mathematische Annalen, 2011, 351 : 805 - 834
  • [32] The Bergman metric on complete Kähler manifolds
    Bo-Yong Chen
    Mathematische Annalen, 2003, 327 : 339 - 349
  • [33] On the -equation¶over pseudoconvex Kähler manifolds
    Hideaki Kazama
    Shigeharu Takayama
    manuscripta mathematica, 2000, 102 : 25 - 39
  • [34] The Kähler Rank of Compact Complex Manifolds
    Ionuţ Chiose
    The Journal of Geometric Analysis, 2016, 26 : 603 - 615
  • [35] Conjugate Points on a Type of Khler Manifolds
    Wei Ming LIU
    Fu Sheng DENG
    Acta Mathematica Sinica,English Series, 2013, (06) : 1175 - 1184
  • [36] Conjugate points on a type of Kähler manifolds
    Wei Ming Liu
    Fu Sheng Deng
    Acta Mathematica Sinica, English Series, 2013, 29 : 1175 - 1184
  • [37] Compact Kähler manifolds with no projective specialization
    Claire Voisin
    Bollettino dell'Unione Matematica Italiana, 2022, 15 : 353 - 364
  • [38] Construction of projective special Kähler manifolds
    Mauro Mantegazza
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2645 - 2687
  • [39] Kähler–Einstein metrics on Fano manifolds
    Gang Tian
    Japanese Journal of Mathematics, 2015, 10 : 1 - 41
  • [40] On the structure of co-Kähler manifolds
    Giovanni Bazzoni
    John Oprea
    Geometriae Dedicata, 2014, 170 : 71 - 85