Comparison and vanishing theorems for Kähler manifolds

被引:0
|
作者
Lei Ni
Fangyang Zheng
机构
[1] University of California,Department of Mathematics
[2] San Diego,Department of Mathematics
[3] The Ohio State University,undefined
[4] Zhejiang Normal University,undefined
来源
Calculus of Variations and Partial Differential Equations | 2018年 / 57卷
关键词
Primary 53C55; 32Q15; Secondary 32Q10; 32Q40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider orthogonal Ricci curvature Ric⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric^{\perp }$$\end{document} for Kähler manifolds, which is a curvature condition closely related to Ricci curvature and holomorphic sectional curvature. We prove comparison theorems and a vanishing theorem related to these curvature conditions, and construct various examples to illustrate subtle relationship among them. As a consequence of the vanishing theorem, we show that any compact Kähler manifold with positive orthogonal Ricci curvature must be projective. This result complements a recent result of Yang (RC-positivity, rational connectedness, and Yau’s conjecture. arXiv:1708.06713) on the projectivity under the positivity of holomorphic sectional curvature. The simply-connectedness is shown when the complex dimension is smaller than five. Further study of compact Kähler manifolds with Ric⊥>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric^{\perp }>0$$\end{document} is carried in Ni et al. (Manifolds with positive orthogonal Ricci curvature. arXiv:1806.10233).
引用
收藏
相关论文
共 50 条
  • [41] Flat nearly Kähler manifolds
    Vicente Cortés
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2007, 32 : 379 - 389
  • [42] Hyper-Kähler Manifolds
    Olivier Debarre
    Milan Journal of Mathematics, 2022, 90 : 305 - 387
  • [43] Hypercomplex structures on Kähler manifolds
    M. Verbitsky
    Geometric & Functional Analysis GAFA, 2005, 15 : 1275 - 1283
  • [44] Cancellation theorems for Kähler differentials
    Kelly, Shane
    ALGEBRAIC GEOMETRY, 2020, 11 (02): : 174 - 177
  • [45] Trees and tensors on Kähler manifolds
    Hao Xu
    Shing-Tung Yau
    Annals of Global Analysis and Geometry, 2013, 44 : 151 - 168
  • [46] A note on almost kähler manifolds
    Domenico Catalano
    Filip Defever
    Ryszard Deszcz
    Marian Hotloś
    Zbigniew Olszak
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1999, 69 : 59 - 65
  • [47] Parallel Translation on Kähler Manifolds
    Rongmu Yan
    Chinese Annals of Mathematics, Series B, 2020, 41 : 451 - 464
  • [48] Homogeneous Kähler and Hamiltonian manifolds
    Bruce Gilligan
    Christian Miebach
    Karl Oeljeklaus
    Mathematische Annalen, 2011, 349 : 889 - 901
  • [49] ?Parallel Translation on K?hler Manifolds
    Rongmu YAN
    Chinese Annals of Mathematics,Series B, 2020, (03) : 451 - 464
  • [50] A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry
    Bo Berndtsson
    Inventiones mathematicae, 2015, 200 : 149 - 200