The Weyl Symbol of Schrödinger Semigroups

被引:0
|
作者
Laurent Amour
Lisette Jager
Jean Nourrigat
机构
[1] Université de Reims Champagne-Ardenne,LMR EA 4535 and FR CNRS 3399
来源
Annales Henri Poincaré | 2015年 / 16卷
关键词
Large Dimension; Wigner Function; Neighbor Interaction; Selfadjoint Extension; Wiener Measure;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Weyl symbol of the Schrödinger semigroup e−tH, H = −Δ + V, t > 0, on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb{R}^n)}$$\end{document} , with nonnegative potentials V in Lloc1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^1_{\rm loc}}$$\end{document} . Some general estimates like the L∞ norm concerning the symbol u are derived. In the case of large dimension, typically for nearest neighbor or mean field interaction potentials, we prove estimates with parameters independent of the dimension for the derivatives ∂xα∂ξβu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial_x^\alpha\partial_\xi^\beta u}$$\end{document} . In particular, this implies that the symbol of the Schrödinger semigroups belongs to the class of symbols introduced in Amour et al. (To appear in Proceedings of the AMS) in a high-dimensional setting. In addition, a commutator estimate concerning the semigroup is proved.
引用
收藏
页码:1479 / 1488
页数:9
相关论文
共 50 条
  • [1] The Weyl Symbol of Schrodinger Semigroups
    Amour, Laurent
    Jager, Lisette
    Nourrigat, Jean
    [J]. ANNALES HENRI POINCARE, 2015, 16 (06): : 1479 - 1488
  • [2] Regularization of Schrödinger groups and semigroups
    V. Zh. Sakbaev
    O. G. Smolyanov
    [J]. Doklady Mathematics, 2012, 86 : 483 - 487
  • [3] Kernel estimates for a class of Schrödinger semigroups
    G. Metafune
    C. Spina
    [J]. Journal of Evolution Equations, 2007, 7 : 719 - 742
  • [4] Generalized Schrödinger Semigroups on Infinite Graphs
    Batu Güneysu
    Ognjen Milatovic
    Françoise Truc
    [J]. Potential Analysis, 2014, 41 : 517 - 541
  • [5] Weyl–Schrödinger Representations of Heisenberg Groups in Infinite Dimensions
    Oleh Lopushansky
    [J]. Results in Mathematics, 2020, 75
  • [6] Quantum Yang-Mills-Weyl Dynamics in the Schrödinger paradigm
    A. Dynin
    [J]. Russian Journal of Mathematical Physics, 2014, 21 : 169 - 188
  • [7] Weyl’s Type Estimates on the Eigenvalues of Critical Schrödinger Operators
    Nikos I. Karachalios
    [J]. Letters in Mathematical Physics, 2008, 83 : 189 - 199
  • [8] Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber
    S. Yu. Dobrokhotov
    D. S. Minenkov
    S. B. Shlosman
    [J]. Theoretical and Mathematical Physics, 2018, 197 : 1626 - 1634
  • [9] On-diagonal Heat Kernel Estimates for Schrödinger Semigroups and Their Application
    Jian Wang
    [J]. Communications in Mathematics and Statistics, 2018, 6 : 493 - 508
  • [10] Boundedness of fractional heat semigroups generated by degenerate Schrödinger operators
    Zhiyong Wang
    Pengtao Li
    Yu Liu
    [J]. Analysis and Mathematical Physics, 2023, 13