Weyl–Schrödinger Representations of Heisenberg Groups in Infinite Dimensions

被引:0
|
作者
Oleh Lopushansky
机构
[1] University of Rzeszów,Institute of Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
Infinite-dimensional Heisenberg group; Weyl–Schrödinger representation in infinite dimensions; Schur polynomials on Paley–Wiener maps; Fourier analysis on virtual unitary matrices; heat equation over Heisenberg group; 81R10; 43A65; 46E50; 35R03;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the group HC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{\mathbb {C}}$$\end{document} of complexified Heisenberg matrices with entries from an infinite-dimensional complex Hilbert space H. Irreducible representations of the Weyl–Schrödinger type on the space Lχ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_\chi $$\end{document} of quadratically integrable C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}-valued functions are described. Integrability is understood with respect to the projective limit χ=lim←χi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi =\varprojlim \chi _i$$\end{document} of probability Haar measures χi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _i$$\end{document} defined on groups of unitary i×i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\times i$$\end{document}-matrices U(i). The measure χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} is invariant under the infinite-dimensional group U(∞)=⋃U(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\infty )=\bigcup U(i)$$\end{document} and satisfies the abstract Kolmogorov consistency conditions. The space Lχ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_\chi $$\end{document} is generated by Schur polynomials on Paley–Wiener maps. The Fourier-image of Lχ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_\chi $$\end{document} coincides with the Hardy space Hβ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}^2_\beta $$\end{document} of Hilbert–Schmidt analytic functions on H generated by the correspondingly weighted Fock space Γβ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _\beta (H)$$\end{document}. An application to heat equation over HC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{\mathbb {C}}$$\end{document} is considered.
引用
收藏
相关论文
共 50 条
  • [1] Weyl-Schrodinger Representations of Heisenberg Groups in Infinite Dimensions
    Lopushansky, Oleh
    RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [2] Dirichlet Problem for Schrödinger Operators on Heisenberg Groups
    Li, Ji
    Lin, Qingze
    Song, Liang
    POTENTIAL ANALYSIS, 2024,
  • [3] Boundedness and compactness of commutators related with Schrödinger operators on Heisenberg groups
    Li Yang
    Pengtao Li
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [4] The Weyl Symbol of Schrödinger Semigroups
    Laurent Amour
    Lisette Jager
    Jean Nourrigat
    Annales Henri Poincaré, 2015, 16 : 1479 - 1488
  • [5] Integral representations for the solutions of infinite order of the stationary Schrödinger equation in a cone
    Lei Qiao
    Yudong Ren
    Monatshefte für Mathematik, 2014, 173 : 593 - 603
  • [6] A new class of weights associated with Schrödinger operator on Heisenberg groups and applications
    Nguyen Ngoc Trong
    Nguyen Xuan Viet Trung
    Le Xuan Truong
    Tan Duc Do
    Analysis and Mathematical Physics, 2024, 14
  • [7] Boundedness of Operators on Campanato Spaces Related with Schrödinger Operators on Heisenberg Groups
    Tiantian Dai
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [8] A new class of weights associated with Schrödinger operator on Heisenberg groups and applications
    Trong, Nguyen Ngoc
    Trung, Nguyen Xuan Viet
    Truong, Le Xuan
    Do, Tan Duc
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [9] ENDPOINT ESTIMATES FOR FRACTIONAL INTEGRAL ASSOCIATED TO SCHRDINGER OPERATORS ON THE HEISENBERG GROUPS
    江寅生
    ActaMathematicaScientia, 2011, 31 (03) : 993 - 1000
  • [10] Analyticity of the Schrödinger propagator on the Heisenberg group
    S. Parui
    P. K. Ratnakumar
    S. Thangavelu
    Monatshefte für Mathematik, 2012, 168 : 279 - 303