The Weyl Symbol of Schrodinger Semigroups

被引:2
|
作者
Amour, Laurent [1 ,2 ]
Jager, Lisette [1 ,2 ]
Nourrigat, Jean [1 ,2 ]
机构
[1] Univ Reims, LMR EA 4535, F-51687 Reims 2, France
[2] Univ Reims, FR CNRS 3399, F-51687 Reims 2, France
来源
ANNALES HENRI POINCARE | 2015年 / 16卷 / 06期
关键词
OPERATORS;
D O I
10.1007/s00023-014-0344-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the Weyl symbol of the Schrodinger semigroup e(-tH) , H = -Delta + V, t > 0, on , with nonnegative potentials V in . Some general estimates like the L (a) norm concerning the symbol u are derived. In the case of large dimension, typically for nearest neighbor or mean field interaction potentials, we prove estimates with parameters independent of the dimension for the derivatives . In particular, this implies that the symbol of the Schrodinger semigroups belongs to the class of symbols introduced in Amour et al. (To appear in Proceedings of the AMS) in a high-dimensional setting. In addition, a commutator estimate concerning the semigroup is proved.
引用
收藏
页码:1479 / 1488
页数:10
相关论文
共 50 条
  • [1] The Weyl Symbol of Schrödinger Semigroups
    Laurent Amour
    Lisette Jager
    Jean Nourrigat
    Annales Henri Poincaré, 2015, 16 : 1479 - 1488
  • [2] ABSORPTION SEMIGROUPS, THEIR GENERATORS, AND SCHRODINGER SEMIGROUPS
    VOIGT, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 67 (02) : 167 - 205
  • [3] On generalized Schrodinger semigroups
    Gueneysu, Batu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (11) : 4639 - 4674
  • [4] ON GENERALIZED SCHRODINGER SEMIGROUPS
    VANCASTEREN, JA
    MARKOV PROCESS AND CONTROL THEORY, 1989, 54 : 16 - 39
  • [5] Compactness of Schrodinger semigroups
    Lenz, Daniel
    Stollmann, Peter
    Wingert, Daniel
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (01) : 94 - 103
  • [6] SCHRODINGER SEMIGROUPS ON MANIFOLDS
    STURM, KT
    JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 118 (02) : 309 - 350
  • [7] Heat semigroups on Weyl algebra
    Avramidi, Ivan G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 161
  • [8] On the Weyl symbol of the resolvent of the harmonic oscillator
    Derezinski, Jan
    Karczmarczyk, Maciej
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (10) : 1537 - 1548
  • [9] Category Theorems for Schrodinger Semigroups
    Aloisio, Moacir
    Carvalho, Silas L.
    de Oliveira, Cesar R.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (04): : 421 - 431
  • [10] CHANGE OF STABILITY FOR SCHRODINGER SEMIGROUPS
    BROWN, KJ
    DANERS, D
    LOPEZGOMEZ, J
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 827 - 846