The Weyl Symbol of Schrödinger Semigroups

被引:0
|
作者
Laurent Amour
Lisette Jager
Jean Nourrigat
机构
[1] Université de Reims Champagne-Ardenne,LMR EA 4535 and FR CNRS 3399
来源
Annales Henri Poincaré | 2015年 / 16卷
关键词
Large Dimension; Wigner Function; Neighbor Interaction; Selfadjoint Extension; Wiener Measure;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Weyl symbol of the Schrödinger semigroup e−tH, H = −Δ + V, t > 0, on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb{R}^n)}$$\end{document} , with nonnegative potentials V in Lloc1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^1_{\rm loc}}$$\end{document} . Some general estimates like the L∞ norm concerning the symbol u are derived. In the case of large dimension, typically for nearest neighbor or mean field interaction potentials, we prove estimates with parameters independent of the dimension for the derivatives ∂xα∂ξβu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial_x^\alpha\partial_\xi^\beta u}$$\end{document} . In particular, this implies that the symbol of the Schrödinger semigroups belongs to the class of symbols introduced in Amour et al. (To appear in Proceedings of the AMS) in a high-dimensional setting. In addition, a commutator estimate concerning the semigroup is proved.
引用
收藏
页码:1479 / 1488
页数:9
相关论文
共 50 条
  • [41] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [42] Schrödinger's mousetrap
    Ilana Goldhaber-Gordon
    David Goldhaber-Gordon
    Nature, 2005, 433 (7028) : 805 - 805
  • [43] Schrödinger's mousetrap
    Liesbeth Venema
    Nature, 2005, 433 (7025) : 463 - 463
  • [44] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [45] Schrödinger's dentist
    Shaun Sellars
    British Dental Journal, 2021, 230 (2) : 63 - 63
  • [46] Schrödinger’s cat
    Itay Ben-Yaacov
    Israel Journal of Mathematics, 2006, 153 : 157 - 191
  • [47] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [48] On decay of the Schrödinger resolvent
    E. A. Kopylova
    Proceedings of the Steklov Institute of Mathematics, 2010, 270 : 165 - 171
  • [49] Schrödinger's mousetrap
    Peter Tuthill
    Nature, 2005, 434 : 277 - 277
  • [50] Stringy Schrödinger truncations
    Stéphane Detournay
    Monica Guica
    Journal of High Energy Physics, 2013