Dunkl–Schrödinger Operators

被引:0
|
作者
Béchir Amri
Amel Hammi
机构
[1] Taibah University,Department of Mathematics, College of Sciences
[2] Université Tunis El Manar,Faculté des sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications
来源
关键词
Self-adjoint operator; Schrödinger operator; Dunkl operators; Primary 47B25; 35J10; Secondary 43A32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Schrödinger operators Lk=-Δk+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_k=-\Delta _k+V$$\end{document}, where Δk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k$$\end{document} is the Dunkl–Laplace operator and V is a non-negative potential on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. We establish that Lk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_k $$\end{document} is essentially self-adjoint on C0∞(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0^\infty (\mathbb {R}^d)$$\end{document}. In particular, we develop a bounded H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document}-calculus on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces for the Dunkl harmonic oscillator operator.
引用
收藏
页码:1033 / 1058
页数:25
相关论文
共 50 条
  • [1] Semigroup and Riesz transform for the Dunkl–Schrödinger operators
    Béchir Amri
    Amel Hammi
    [J]. Semigroup Forum, 2020, 101 : 507 - 533
  • [2] On the images of Dunkl–Sobolev spaces under the Schrödinger semigroup associated to Dunkl operators
    C. Sivaramakrishnan
    D. Sukumar
    D. Venku Naidu
    [J]. Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 93 - 120
  • [3] Behavior of eigenvalues of certain Schrödinger operators in the rational Dunkl setting
    Agnieszka Hejna
    [J]. Analysis and Mathematical Physics, 2021, 11
  • [4] Schrödinger Operators with Reverse Hölder Class Potentials in the Dunkl Setting and Their Hardy Spaces
    Agnieszka Hejna
    [J]. Journal of Fourier Analysis and Applications, 2021, 27
  • [5] On Schrödinger Oscillatory Integrals Associated with the Dunkl Transform
    Zhongkai Li
    Xiaoliang Zhang
    [J]. Journal of Fourier Analysis and Applications, 2019, 25 : 267 - 298
  • [6] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    [J]. Journal of Fourier Analysis and Applications, 2022, 28
  • [7] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    [J]. Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [8] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    [J]. Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [9] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    [J]. Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [10] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    [J]. Communications in Mathematical Physics, 2011, 306 : 187 - 191