The Weyl Symbol of Schrödinger Semigroups

被引:0
|
作者
Laurent Amour
Lisette Jager
Jean Nourrigat
机构
[1] Université de Reims Champagne-Ardenne,LMR EA 4535 and FR CNRS 3399
来源
Annales Henri Poincaré | 2015年 / 16卷
关键词
Large Dimension; Wigner Function; Neighbor Interaction; Selfadjoint Extension; Wiener Measure;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Weyl symbol of the Schrödinger semigroup e−tH, H = −Δ + V, t > 0, on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb{R}^n)}$$\end{document} , with nonnegative potentials V in Lloc1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^1_{\rm loc}}$$\end{document} . Some general estimates like the L∞ norm concerning the symbol u are derived. In the case of large dimension, typically for nearest neighbor or mean field interaction potentials, we prove estimates with parameters independent of the dimension for the derivatives ∂xα∂ξβu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial_x^\alpha\partial_\xi^\beta u}$$\end{document} . In particular, this implies that the symbol of the Schrödinger semigroups belongs to the class of symbols introduced in Amour et al. (To appear in Proceedings of the AMS) in a high-dimensional setting. In addition, a commutator estimate concerning the semigroup is proved.
引用
收藏
页码:1479 / 1488
页数:9
相关论文
共 50 条
  • [31] Eigenvalue Inequalities in Terms of Schatten Norm Bounds on Differences of Semigroups, and Application to Schrödinger Operators
    Michael Demuth
    Guy Katriel
    Annales Henri Poincaré, 2008, 9 : 817 - 834
  • [32] Schrödinger-type identity for Schrödinger free boundary problems
    Xingjian Zhang
    Duo Liu
    Zining Yan
    Guodong Zhao
    Ye Yuan
    Boundary Value Problems, 2018
  • [33] Even non-increasing solution for a Schrödinger type problem with Liouville–Weyl fractional derivative
    César E. Torres Ledesma
    Hernán C. Gutierrez
    Jesús A. Rodríguez
    Ziheng Zhang
    Computational and Applied Mathematics, 2022, 41
  • [34] Half line Titchmarsh–Weyl m functions of vector-valued discrete Schrödinger operators
    Keshav Raj Acharya
    Matt McBride
    Annals of Functional Analysis, 2021, 12
  • [35] Schrödinger's mousetrap
    Laura Garwin
    Nature, 2005, 433 (7026) : 579 - 579
  • [36] Holography for Schrödinger backgrounds
    Monica Guica
    Kostas Skenderis
    Marika Taylor
    Balt C. van Rees
    Journal of High Energy Physics, 2011
  • [37] Schrödinger’s mousetrap
    Gee H.
    Nature, 2005, 434 (7032) : 440 - 441
  • [38] Schrödinger's sheep
    Wojciech H. Zurek
    Nature, 2000, 404 : 130 - 131
  • [39] Schrödinger’s Fetus
    Joona Räsänen
    Medicine, Health Care and Philosophy, 2020, 23 : 125 - 130
  • [40] More on Schrödinger holography
    A. Golubtsova
    H. Dimov
    I. Iliev
    M. Radomirov
    R. C. Rashkov
    T. Vetsov
    Journal of High Energy Physics, 2020