On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems

被引:0
|
作者
Jeovanny de Jesus Muentes Acevedo
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
关键词
Topological entropy; Strong topology; Non-autonomous dynamical systems; Non-stationary dynamical systems; 37A35; 37B40; 37B55;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a compact Riemannian manifold. The set Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document} consisting of sequences (fi)i∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_{i})_{i\in {\mathbb {Z}}}$$\end{document} of Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{r}$$\end{document}-diffeomorphisms on M can be endowed with the compact topology or with the strong topology. A notion of topological entropy is given for these sequences. I will prove this entropy is discontinuous at each sequence if we consider the compact topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}. On the other hand, if r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r\ge 1$$\end{document} and we consider the strong topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}, this entropy is a continuous map.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条