On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems

被引:0
|
作者
Jeovanny de Jesus Muentes Acevedo
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
关键词
Topological entropy; Strong topology; Non-autonomous dynamical systems; Non-stationary dynamical systems; 37A35; 37B40; 37B55;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a compact Riemannian manifold. The set Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document} consisting of sequences (fi)i∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_{i})_{i\in {\mathbb {Z}}}$$\end{document} of Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{r}$$\end{document}-diffeomorphisms on M can be endowed with the compact topology or with the strong topology. A notion of topological entropy is given for these sequences. I will prove this entropy is discontinuous at each sequence if we consider the compact topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}. On the other hand, if r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r\ge 1$$\end{document} and we consider the strong topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}, this entropy is a continuous map.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [21] SOME NOTES ON THE TOPOLOGICAL PRESSURE OF NON-AUTONOMOUS SYSTEMS
    Li, Chang-Bing
    Ye, Yuan-Ling
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (01) : 305 - 326
  • [22] TOPOLOGICAL CONJUGACY FOR LIPSCHITZ PERTURBATIONS OF NON-AUTONOMOUS SYSTEMS
    Li, Ming-Chia
    Lyu, Ming-Jiea
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (09) : 5011 - 5024
  • [23] Splitting methods for non-autonomous separable dynamical systems
    Blanes, S.
    Casas, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5405 - 5423
  • [24] Attractors for impulsive non-autonomous dynamical systems and their relations
    Bonotto, E. M.
    Bortolan, M. C.
    Caraballo, T.
    Collegari, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (06) : 3524 - 3550
  • [25] Uniform attractors for non-autonomous random dynamical systems
    Cui, Hongyong
    Langa, Jose A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 1225 - 1268
  • [26] Approximate Forward Attractors of Non-Autonomous Dynamical Systems
    Xuewei JU
    Desheng LI
    Chunqiu LI
    Ailing QI
    ChineseAnnalsofMathematics,SeriesB, 2019, (04) : 541 - 554
  • [27] Approximate Forward Attractors of Non-Autonomous Dynamical Systems
    Ju, Xuewei
    Li, Desheng
    Li, Chunqiu
    Qi, Ailing
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2019, 40 (04) : 541 - 554
  • [28] State space decomposition for non-autonomous dynamical systems
    Chen, Xiaopeng
    Duan, Jinqiao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 957 - 974
  • [29] Approximate Forward Attractors of Non-Autonomous Dynamical Systems
    Xuewei Ju
    Desheng Li
    Chunqiu Li
    Ailing Qi
    Chinese Annals of Mathematics, Series B, 2019, 40 : 541 - 554
  • [30] Sell's conjecture for non-autonomous dynamical systems
    Cheban, David
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (07) : 3393 - 3406