On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems

被引:0
|
作者
Jeovanny de Jesus Muentes Acevedo
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
关键词
Topological entropy; Strong topology; Non-autonomous dynamical systems; Non-stationary dynamical systems; 37A35; 37B40; 37B55;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a compact Riemannian manifold. The set Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document} consisting of sequences (fi)i∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_{i})_{i\in {\mathbb {Z}}}$$\end{document} of Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{r}$$\end{document}-diffeomorphisms on M can be endowed with the compact topology or with the strong topology. A notion of topological entropy is given for these sequences. I will prove this entropy is discontinuous at each sequence if we consider the compact topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}. On the other hand, if r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r\ge 1$$\end{document} and we consider the strong topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}, this entropy is a continuous map.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [31] New equilibria of non-autonomous discrete dynamical systems
    Navascues, M. A.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [32] INVARIANT MEASURES FOR NON-AUTONOMOUS DISSIPATIVE DYNAMICAL SYSTEMS
    Lukaszewicz, Grzegorz
    Robinson, James C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (10) : 4211 - 4222
  • [33] Non-autonomous difference equations and discrete dynamical systems
    Kloeden, Peter E.
    Poetzsche, C.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (02) : 129 - 130
  • [34] Ground state solutions for non-autonomous dynamical systems
    Schechter, Martin
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [35] Weak stability of non-autonomous discrete dynamical systems
    Lan, Yaoyao
    Peris, Alfred
    TOPOLOGY AND ITS APPLICATIONS, 2018, 250 : 53 - 60
  • [36] Morse Decomposition of Attractors for Non-autonomous Dynamical Systems
    Caraballo, Tomas
    Jara, Juan C.
    Langa, Jose A.
    Liu, Zhenxin
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 309 - 329
  • [37] Some results on entropy dimension for non-autonomous systems
    YANG Yan-juan
    WANG Lin
    WANG Wei
    Applied Mathematics:A Journal of Chinese Universities, 2020, 35 (03) : 281 - 292
  • [38] Some results on entropy dimension for non-autonomous systems
    Yan-juan Yang
    Lin Wang
    Wei Wang
    Applied Mathematics-A Journal of Chinese Universities, 2020, 35 : 281 - 292
  • [39] Some results on entropy dimension for non-autonomous systems
    Yang, Yan-juan
    Wang, Lin
    Wang, Wei
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2020, 35 (03) : 281 - 292
  • [40] Controlling coexisting attractors of a class of non-autonomous dynamical systems
    Zhang, Zhi
    Paez Chavez, Joseph
    Sieber, Jan
    Liu, Yang
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 431