Let M be a compact Riemannian manifold. The set Fr(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {F}^{r}(M)$$\end{document} consisting of sequences (fi)i∈Z\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(f_{i})_{i\in {\mathbb {Z}}}$$\end{document} of Cr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^{r}$$\end{document}-diffeomorphisms on M can be endowed with the compact topology or with the strong topology. A notion of topological entropy is given for these sequences. I will prove this entropy is discontinuous at each sequence if we consider the compact topology on Fr(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {F}^{r}(M)$$\end{document}. On the other hand, if r≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ r\ge 1$$\end{document} and we consider the strong topology on Fr(M)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {F}^{r}(M)$$\end{document}, this entropy is a continuous map.
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
Yang, Yan-juan
Wang, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ Finance & Econ, Coll Appl Math, Taiyuan 030006, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
Wang, Lin
Wang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China