Splitting methods in the numerical integration of non-autonomous dynamical systems

被引:9
|
作者
Blanes, Sergio [2 ]
Casas, Fernando [1 ]
Murua, Ander [3 ]
机构
[1] Inst Matemat & Aplicac Castello, Dept Matemat, Castellon de La Plana 12071, Spain
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[3] EHU UPV, Informat Fak, Donostia San Sebastian, Spain
关键词
Splitting methods; Time-dependent problems; Geometric integrators;
D O I
10.1007/s13398-011-0024-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a procedure leading to efficient splitting schemes for the time integration of explicitly time dependent partitioned linear differential equations arising when certain partial differential equations are previously discretized in space. In the first stage we analyze the order conditions of the corresponding autonomous problem and construct new 6th-order methods. In the second stage, by following a procedure previously designed by the authors, we generalize the methods to the time dependent case in such a way that no order reduction is present. The resulting schemes compare favorably with other integrators previously available.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 50 条
  • [1] Splitting methods in the numerical integration of non-autonomous dynamical systems
    Sergio Blanes
    Fernando Casas
    Ander Murua
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 49 - 66
  • [2] Splitting methods for non-autonomous separable dynamical systems
    Blanes, S.
    Casas, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5405 - 5423
  • [3] Splitting methods for non-autonomous linear systems
    Blanes, Sergio
    Casas, Fernando
    Murua, Ander
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (06) : 713 - 727
  • [4] On non-autonomous dynamical systems
    Anzaldo-Meneses, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [5] NON-AUTONOMOUS DYNAMICAL SYSTEMS
    Carvalho, Alexandre N.
    Langa, Jose A.
    Robinson, James C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 703 - 747
  • [6] Recurrence in non-autonomous dynamical systems
    Cavro, Jakub
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (9-10) : 1404 - 1411
  • [7] On fuzzifications of non-autonomous dynamical systems
    Shao, Hua
    Zhu, Hao
    Chen, Guanrong
    TOPOLOGY AND ITS APPLICATIONS, 2021, 297
  • [8] Splitting methods for non-autonomous Hamiltonian equations
    Blanes, S
    Moan, PC
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (01) : 205 - 230
  • [9] Mapping of non-autonomous dynamical systems to autonomous ones
    Momeni, Davood
    Channuie, Phongpichit
    Al Ajmi, Mudhahir
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (06)
  • [10] Sensitivity of non-autonomous discrete dynamical systems
    Huang, Qiuling
    Shi, Yuming
    Zhang, Lijuan
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 31 - 34