Splitting methods in the numerical integration of non-autonomous dynamical systems

被引:9
|
作者
Blanes, Sergio [2 ]
Casas, Fernando [1 ]
Murua, Ander [3 ]
机构
[1] Inst Matemat & Aplicac Castello, Dept Matemat, Castellon de La Plana 12071, Spain
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[3] EHU UPV, Informat Fak, Donostia San Sebastian, Spain
关键词
Splitting methods; Time-dependent problems; Geometric integrators;
D O I
10.1007/s13398-011-0024-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a procedure leading to efficient splitting schemes for the time integration of explicitly time dependent partitioned linear differential equations arising when certain partial differential equations are previously discretized in space. In the first stage we analyze the order conditions of the corresponding autonomous problem and construct new 6th-order methods. In the second stage, by following a procedure previously designed by the authors, we generalize the methods to the time dependent case in such a way that no order reduction is present. The resulting schemes compare favorably with other integrators previously available.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 50 条
  • [31] The Baire Class of Topological Entropy of Non-Autonomous Dynamical Systems
    Astrelina, A. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2018, 73 (05) : 203 - 206
  • [32] Controlling coexisting attractors of a class of non-autonomous dynamical systems
    Zhang, Zhi
    Paez Chavez, Joseph
    Sieber, Jan
    Liu, Yang
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 431
  • [33] ON ω-LIMIT SETS AND ATTRACTION OF NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS
    Liu, Lei
    Chen, Bin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) : 703 - 713
  • [34] Some criteria of chaos in non-autonomous discrete dynamical systems
    Shao, Hua
    Chen, Guanrong
    Shi, Yuming
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (03) : 295 - 308
  • [35] REGULARITY AND IRREGULARITY OF FIBER DIMENSIONS OF NON-AUTONOMOUS DYNAMICAL SYSTEMS
    Mayer, Volker
    Skorulski, Bartlomiej
    Urbanski, Mariusz
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 489 - 514
  • [36] Random Perturbation of Invariant Manifolds for Non-Autonomous Dynamical Systems
    Jiang, Tao
    Guo, Zhongkai
    Yan, Xingjie
    MATHEMATICS, 2022, 10 (06)
  • [37] Some questions concerning attractors for non-autonomous dynamical systems
    Johnson, Russell
    Munoz-Villarragut, Victor
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1858 - E1868
  • [38] THE EFFICIENT APPROXIMATION OF COHERENT PAIRS IN NON-AUTONOMOUS DYNAMICAL SYSTEMS
    Dellnitz, Michael
    Horenkamp, Christian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (09) : 3029 - 3042
  • [39] Markus-Yamabe conjecture for non-autonomous dynamical systems
    Cheban, David
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 202 - 218
  • [40] Invariant forward attractors of non-autonomous random dynamical systems
    Cui, Hongyong
    Kloeden, Peter E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) : 6166 - 6186