Recurrence in non-autonomous dynamical systems

被引:0
|
作者
Cavro, Jakub [1 ]
机构
[1] Silesian Univ Opava, Math Inst Opava, Rybnicku 1, Opava 74601, Czech Republic
关键词
Non-autonomous dynamical system; recurrent points; non-wandering points; Secondary; 39A;
D O I
10.1080/10236198.2019.1651849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a sequence of continuous maps on a compact metric space X uniformly converging to a function f. This sequence forms a non-autonomous discrete dynamical system. In such case, the set of omega-limit points is invariant with respect to the limit function f. Here we give negative answer to questions whether the sets of recurrent points and non-wandering points are also invariant. We also discuss the relation of the set of recurrent points of and its limit function f.
引用
收藏
页码:1404 / 1411
页数:8
相关论文
共 50 条
  • [1] On non-autonomous dynamical systems
    Anzaldo-Meneses, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [2] NON-AUTONOMOUS DYNAMICAL SYSTEMS
    Carvalho, Alexandre N.
    Langa, Jose A.
    Robinson, James C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 703 - 747
  • [3] On fuzzifications of non-autonomous dynamical systems
    Shao, Hua
    Zhu, Hao
    Chen, Guanrong
    TOPOLOGY AND ITS APPLICATIONS, 2021, 297
  • [4] Mapping of non-autonomous dynamical systems to autonomous ones
    Momeni, Davood
    Channuie, Phongpichit
    Al Ajmi, Mudhahir
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (06)
  • [5] Sensitivity of non-autonomous discrete dynamical systems
    Huang, Qiuling
    Shi, Yuming
    Zhang, Lijuan
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 31 - 34
  • [6] A note on non-autonomous discrete dynamical systems
    Makrooni, Roya
    Abbasi, Neda
    TOPOLOGY AND ITS APPLICATIONS, 2024, 358
  • [7] Lower semicontinuity of attractors for non-autonomous dynamical systems
    Carvalho, Alexandre N.
    Langa, Jose A.
    Robinson, James C.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1765 - 1780
  • [8] Some results on the entropy of non-autonomous dynamical systems
    Kawan, Christoph
    Latushkin, Yuri
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (03): : 251 - 279
  • [9] Splitting methods for non-autonomous separable dynamical systems
    Blanes, S.
    Casas, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5405 - 5423
  • [10] Attractors for impulsive non-autonomous dynamical systems and their relations
    Bonotto, E. M.
    Bortolan, M. C.
    Caraballo, T.
    Collegari, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (06) : 3524 - 3550