Nonlinear robust periodic output regulation of minimum phase systems

被引:0
|
作者
Daniele Astolfi
Laurent Praly
Lorenzo Marconi
机构
[1] Univ Lyon,MINES ParisTech
[2] Université Claude Bernard Lyon 1,CASY
[3] CNRS,DEI
[4] LAGEPP UMR 5007,undefined
[5] 43 boulevard du 11 Novembre 1918,undefined
[6] PSL Research University,undefined
[7] CAS - Centre automatique et systémes,undefined
[8] University of Bologna,undefined
关键词
Nonlinear output regulation; Repetitive control; Minimum phase systems; Harmonic rejection;
D O I
暂无
中图分类号
学科分类号
摘要
In linear system theory, it is a well-known fact that a regulator given by the cascade of an oscillatory dynamics, driven by some regulated variables, and of a stabiliser stabilising the cascade of the plant and of the oscillators has the ability of blocking on the steady state of the regulated variables any harmonics matched with the ones of the oscillators. This is the well-celebrated internal model principle. In this paper, we are interested to follow the same design route for a controlled plant that is a nonlinear and periodic system with period T: we add a bunch of linear oscillators, embedding no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document} harmonics that are multiple of 2π/T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \pi /T$$\end{document}, driven by a “regulated variable” of the nonlinear system, we look for a stabiliser for the nonlinear cascade of the plant and the oscillators, and we study the asymptotic properties of the resulting closed-loop regulated variable. In this framework, the contributions of the paper are multiple: for specific class of minimum-phase systems we present a systematic way of designing a stabiliser, which is uniform with respect to no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}, by using a mix of high-gain and forwarding techniques; we prove that the resulting closed-loop system has a periodic steady state with period T with a domain of attraction not shrinking with no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}; similarly to the linear case, we also show that the spectrum of the steady-state closed-loop regulated variable does not contain the n harmonics embedded in the bunch of oscillators and that the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} norm of the regulated variable is a monotonically decreasing function of no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}. The results are robust, namely the asymptotic properties on the regulated variable hold also in the presence of any uncertainties in the controlled plant not destroying closed-loop stability.
引用
收藏
页码:129 / 184
页数:55
相关论文
共 50 条
  • [21] Robust output regulation for a class of uncertain nonlinear systems
    Chen Zuoxian
    Ji Haibo
    He Defeng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 514 - +
  • [22] Hybrid Output Regulation for Minimum Phase Linear Systems
    Cox, Nicholas
    Teel, Andrew
    Marconi, Lorenzo
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 863 - 868
  • [23] Robust Output Regulation for Uncertain Linear Minimum Phase Systems under Unknown Control Direction
    Gong, Yizhou
    Zhu, Fanglai
    Wang, Yang
    IFAC PAPERSONLINE, 2023, 56 (02): : 4563 - 4569
  • [24] Robust Output Regulation for Continuous-Time Periodic Systems
    Paunonen, Lassi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) : 4363 - 4375
  • [25] Adaptive Robust Output Regulation of Uncertain Linear Periodic Systems
    Zhang, Zhen
    Serrani, Andrea
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 266 - 278
  • [26] Robust Output Regulation for a Class of Nonlinear Systems not Detectable by Regulated Output
    Wang, Lei
    Wen, Changyun
    Marconi, Lorenzo
    Su, Hongye
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1914 - 1919
  • [27] Global Robust Output Regulation for a Class of Nonlinear Output Feedback Systems
    Guo, Meichen
    Liu, Lu
    Feng, Gang
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 717 - 721
  • [28] Robust output regulation for a class of nonlinear systems not detectable by the regulated output
    Wang, Lei
    Marconi, Lorenzo
    Wen, Changyun
    Su, Hongye
    EUROPEAN JOURNAL OF CONTROL, 2020, 52 : 26 - 33
  • [29] On the design of robust servomechanisms for minimum phase nonlinear systems
    Khalil, HK
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3075 - 3080
  • [30] On the design of robust servomechanisms for minimum phase nonlinear systems
    Khalil, HK
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2000, 10 (05) : 339 - 361