Nonlinear robust periodic output regulation of minimum phase systems

被引:0
|
作者
Daniele Astolfi
Laurent Praly
Lorenzo Marconi
机构
[1] Univ Lyon,MINES ParisTech
[2] Université Claude Bernard Lyon 1,CASY
[3] CNRS,DEI
[4] LAGEPP UMR 5007,undefined
[5] 43 boulevard du 11 Novembre 1918,undefined
[6] PSL Research University,undefined
[7] CAS - Centre automatique et systémes,undefined
[8] University of Bologna,undefined
关键词
Nonlinear output regulation; Repetitive control; Minimum phase systems; Harmonic rejection;
D O I
暂无
中图分类号
学科分类号
摘要
In linear system theory, it is a well-known fact that a regulator given by the cascade of an oscillatory dynamics, driven by some regulated variables, and of a stabiliser stabilising the cascade of the plant and of the oscillators has the ability of blocking on the steady state of the regulated variables any harmonics matched with the ones of the oscillators. This is the well-celebrated internal model principle. In this paper, we are interested to follow the same design route for a controlled plant that is a nonlinear and periodic system with period T: we add a bunch of linear oscillators, embedding no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document} harmonics that are multiple of 2π/T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \pi /T$$\end{document}, driven by a “regulated variable” of the nonlinear system, we look for a stabiliser for the nonlinear cascade of the plant and the oscillators, and we study the asymptotic properties of the resulting closed-loop regulated variable. In this framework, the contributions of the paper are multiple: for specific class of minimum-phase systems we present a systematic way of designing a stabiliser, which is uniform with respect to no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}, by using a mix of high-gain and forwarding techniques; we prove that the resulting closed-loop system has a periodic steady state with period T with a domain of attraction not shrinking with no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}; similarly to the linear case, we also show that the spectrum of the steady-state closed-loop regulated variable does not contain the n harmonics embedded in the bunch of oscillators and that the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} norm of the regulated variable is a monotonically decreasing function of no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}. The results are robust, namely the asymptotic properties on the regulated variable hold also in the presence of any uncertainties in the controlled plant not destroying closed-loop stability.
引用
收藏
页码:129 / 184
页数:55
相关论文
共 50 条
  • [41] Robust Optimal Output Regulation for Nonlinear Systems With Unknown Parameters
    Jin, Peng
    Ma, Qian
    Lewis, Frank L.
    Xu, Shengyuan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (08): : 4908 - 4917
  • [42] Robust output regulation for discrete-time nonlinear systems
    Lan, WY
    Huang, J
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (02) : 63 - 81
  • [43] GLOBAL ROBUST OUTPUT REGULATION FOR A CLASS OF SWITCHED NONLINEAR SYSTEMS WITH NONLINEAR EXOSYSTEMS
    Long, Lijun
    Zhao, Jun
    ASIAN JOURNAL OF CONTROL, 2014, 16 (06) : 1811 - 1819
  • [44] Robust output regulation for nonlinear systems with nonpolynomial nonlinearity under nonlinear exosystems
    Sun W.
    Sun, W. (auwjsun@scut.edu.cn), 1600, South China University of Technology (11): : 592 - 599
  • [45] Robust output regulation of singular nonlinear systems via a nonlinear internal model
    Pang, SL
    Huang, J
    Bai, YH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (02) : 222 - 228
  • [46] Robust Output Regulation for Nonlinear Systems Containing Nonpolynomial Nonlinearity with Nonlinear Exosystems
    Sun Weijie
    Qiao Yupeng
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 414 - 419
  • [47] Robust output regulation for nonlinear systems with nonpolynomial nonlinearity under nonlinear exosystems
    Weijie SUN
    Control Theory and Technology, 2013, 11 (04) : 592 - 599
  • [48] Global output regulation of nonminimum phase nonlinear systems
    Onishi, N
    Yamashita, Y
    Nishitani, H
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 79 - 84
  • [49] Robust stabilization of a class of non-minimum-phase nonlinear systems in a generalized output feedback canonical form
    Fu, Jun
    Jin, Ying
    Zhao, Jun
    Dimirovski, G. M.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2009, 23 (03) : 260 - 277
  • [50] OUTPUT REGULATION OF NONLINEAR-SYSTEMS EVOLVING IN THE NEIGHBORHOOD OF A PERIODIC ORBIT
    LUCIBELLO, P
    AUTOMATICA, 1995, 31 (02) : 309 - 314