Nonlinear robust periodic output regulation of minimum phase systems

被引:0
|
作者
Daniele Astolfi
Laurent Praly
Lorenzo Marconi
机构
[1] Univ Lyon,MINES ParisTech
[2] Université Claude Bernard Lyon 1,CASY
[3] CNRS,DEI
[4] LAGEPP UMR 5007,undefined
[5] 43 boulevard du 11 Novembre 1918,undefined
[6] PSL Research University,undefined
[7] CAS - Centre automatique et systémes,undefined
[8] University of Bologna,undefined
关键词
Nonlinear output regulation; Repetitive control; Minimum phase systems; Harmonic rejection;
D O I
暂无
中图分类号
学科分类号
摘要
In linear system theory, it is a well-known fact that a regulator given by the cascade of an oscillatory dynamics, driven by some regulated variables, and of a stabiliser stabilising the cascade of the plant and of the oscillators has the ability of blocking on the steady state of the regulated variables any harmonics matched with the ones of the oscillators. This is the well-celebrated internal model principle. In this paper, we are interested to follow the same design route for a controlled plant that is a nonlinear and periodic system with period T: we add a bunch of linear oscillators, embedding no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document} harmonics that are multiple of 2π/T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \pi /T$$\end{document}, driven by a “regulated variable” of the nonlinear system, we look for a stabiliser for the nonlinear cascade of the plant and the oscillators, and we study the asymptotic properties of the resulting closed-loop regulated variable. In this framework, the contributions of the paper are multiple: for specific class of minimum-phase systems we present a systematic way of designing a stabiliser, which is uniform with respect to no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}, by using a mix of high-gain and forwarding techniques; we prove that the resulting closed-loop system has a periodic steady state with period T with a domain of attraction not shrinking with no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}; similarly to the linear case, we also show that the spectrum of the steady-state closed-loop regulated variable does not contain the n harmonics embedded in the bunch of oscillators and that the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} norm of the regulated variable is a monotonically decreasing function of no\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_o$$\end{document}. The results are robust, namely the asymptotic properties on the regulated variable hold also in the presence of any uncertainties in the controlled plant not destroying closed-loop stability.
引用
收藏
页码:129 / 184
页数:55
相关论文
共 50 条
  • [31] Introducing High-gain Internal Model to Semi-global Robust Output Regulation for Minimum-phase Nonlinear Systems
    Wei, Xile
    Wang, Jiang
    Deng, Bin
    Che, Yanqiu
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 552 - 557
  • [32] GLOBAL ROBUST OUTPUT REGULATION OF A CLASS OF NONLINEAR SYSTEMS WITH NONLINEAR EXOSYSTEMS
    Jiang, Yuan
    Lu, Ke
    Dai, Jiyang
    KYBERNETIKA, 2020, 56 (04) : 794 - 809
  • [33] New results on robust output regulation of nonlinear systems with a nonlinear exosystem
    Yang, Xi
    Huang, Jie
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (15) : 1703 - 1719
  • [34] Output Regulation for a Class of Weakly Minimum Phase Systems and Its Application to a Nonlinear Benchmark System
    Jiang, Yu
    Huang, Jie
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5321 - +
  • [35] Emulation-based semiglobal output regulation of minimum phase nonlinear systems with sampled measurements
    Astolfi, Daniele
    Casadei, Giacomo
    Postoyan, Romain
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1931 - 1936
  • [36] Event-Triggered Robust Practical Output Regulation for a Class of Linear Minimum-Phase Systems
    Liu, Wei
    Huang, Jie
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 3188 - 3193
  • [37] Stabilization of minimum phase nonlinear systems by dynamic output feedback
    Chen, PN
    Qin, HS
    Cheng, DZ
    Hong, YG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) : 2331 - 2335
  • [38] Robust output consensus of networked heterogeneous nonlinear systems by distributed output regulation
    Lu, Maobin
    Liu, Lu
    AUTOMATICA, 2018, 94 : 186 - 193
  • [39] Global robust output regulation of multivariable systems with nonlinear exosystem
    Ping, Zhaowu
    Tang, Hao
    Lu, Jun-Guo
    Tan, Qi
    Ma, Qingchuan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (17) : 3867 - 3882
  • [40] Restricted global robust output regulation for output feedback systems with nonlinear exosystems
    Zhou, Guopeng
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 344 - 349