On the second-order regularity of solutions to the parabolic p-Laplace equation

被引:0
|
作者
Yawen Feng
Mikko Parviainen
Saara Sarsa
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Beihang University,School of Mathematical Science
[3] University of Helsinki,Department of Mathematics and Statistics
来源
关键词
-parabolic functions; Weak solutions; Fundamental inequality; Sobolev regularity; Time derivative; 35K65; 35K67; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that D(Dup-2+s2Du)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$\end{document} exists as a function and belongs to Lloc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}_{\text {loc}}$$\end{document} with s>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>-1$$\end{document} and 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}. The range of s is sharp.
引用
收藏
相关论文
共 50 条