We investigate the mixed local and nonlocal parabolic p-Laplace equation ∂tu(x,t)-Δpu(x,t)+Lu(x,t)=0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \partial _t u(x,t)-\Delta _p u(x,t)+\mathcal {L}u(x,t)=0, \end{aligned}$$\end{document}where Δp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta _p$$\end{document} is the usual local p-Laplace operator and L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {L}$$\end{document} is the nonlocal p-Laplace type operator. Based on the combination of suitable Caccioppoli-type inequality and Logarithmic Lemma with a De Giorgi–Nash–Moser iteration, we establish the local boundedness and Hölder continuity of weak solutions for such equations.