Regularity Theory for Mixed Local and Nonlocal Parabolic p-Laplace Equations

被引:0
|
作者
Yuzhou Fang
Bin Shang
Chao Zhang
机构
[1] Harbin Institute of Technology,School of Mathematics
[2] Harbin Institute of Technology,School of Mathematics and Institute for Advanced Study in Mathematics
来源
关键词
Local boundedness; Hölder continuity; Mixed local and nonlocal parabolic ; -Laplace equation; 35B45; 35B65; 35D30; 35K55; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the mixed local and nonlocal parabolic p-Laplace equation ∂tu(x,t)-Δpu(x,t)+Lu(x,t)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t u(x,t)-\Delta _p u(x,t)+\mathcal {L}u(x,t)=0, \end{aligned}$$\end{document}where Δp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _p$$\end{document} is the usual local p-Laplace operator and L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} is the nonlocal p-Laplace type operator. Based on the combination of suitable Caccioppoli-type inequality and Logarithmic Lemma with a De Giorgi–Nash–Moser iteration, we establish the local boundedness and Hölder continuity of weak solutions for such equations.
引用
收藏
相关论文
共 50 条