Regularity Theory for Mixed Local and Nonlocal Parabolic p-Laplace Equations

被引:12
|
作者
Fang, Yuzhou [1 ]
Shang, Bin [1 ]
Zhang, Chao [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Local boundedness; Holder continuity; Mixed local and nonlocal parabolic p-Laplace equation; HARNACK INEQUALITIES; DIRICHLET FORMS; PRINCIPLE; BEHAVIOR;
D O I
10.1007/s12220-021-00768-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the mixed local and nonlocal parabolic p-Laplace equation partial derivative(t) u(x, t) - Delta(p) u (x, t) + L u (x, t) = 0, where Delta(p) is the usual local p-Laplace operator and L is the nonlocal p-Laplace type operator. Based on the combination of suitable Caccioppoli-type inequality and Logarithmic Lemma with a De Giorgi-Nash-Moser iteration, we establish the local boundedness and Holder continuity of weak solutions for such equations.
引用
收藏
页数:33
相关论文
共 50 条