Marcinkiewicz regularity for singular parabolic p-Laplace type equations with measure data

被引:1
|
作者
Park, Jung -Tae [1 ]
机构
[1] Korea Univ Technol & Educ, Sch Liberal Arts, Cheonan 31253, South Korea
基金
新加坡国家研究基金会;
关键词
Singular parabolic equation; Measure data; Marcinkiewicz space; UNIQUENESS; EXISTENCE; CAPACITY; SYSTEMS;
D O I
10.1016/j.na.2022.113073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasilinear parabolic equations with measurable coefficients when the right-hand side is a signed Radon measure with finite total mass, having p-Laplace type: u(t) - div a(Du, x, t) = mu in omega x (0, T) subset of R-n x R. In the singular range 2n/n+1 < p <= 2 - 1/n+1 , we establish regularity estimates for the spatial gradient of solutions in the Marcinkiewicz spaces, under a suitable density condition of the right-hand side measure. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条