On the second-order regularity of solutions to the parabolic p-Laplace equation

被引:0
|
作者
Yawen Feng
Mikko Parviainen
Saara Sarsa
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Beihang University,School of Mathematical Science
[3] University of Helsinki,Department of Mathematics and Statistics
来源
关键词
-parabolic functions; Weak solutions; Fundamental inequality; Sobolev regularity; Time derivative; 35K65; 35K67; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that D(Dup-2+s2Du)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$\end{document} exists as a function and belongs to Lloc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}_{\text {loc}}$$\end{document} with s>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>-1$$\end{document} and 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}. The range of s is sharp.
引用
收藏
相关论文
共 50 条
  • [21] A universal bound for radial solutions of the quasilinear parabolic equation with p-Laplace operator
    Zhang, Zhengce
    Li, Zhenjie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 125 - 134
  • [22] Lyapunov stability results for the parabolic p-Laplace equation
    Cristofaro, Andrea
    Giambo, Roberto
    Giannoni, Fabio
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 3001 - 3006
  • [23] Finite difference schemes for the parabolic p-Laplace equation
    del Teso F.
    Lindgren E.
    SeMA Journal, 2023, 80 (4) : 527 - 547
  • [24] Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains
    Ebmeyer, C
    Liu, WB
    Steinhauer, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 353 - 374
  • [25] Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient
    Bohner, Martin
    Li, Tongxing
    APPLIED MATHEMATICS LETTERS, 2014, 37 : 72 - 76
  • [26] Regularity of solutions of boundary value problems for a second-order parabolic equation in weighted Hölder spaces
    M. F. Cherepova
    Differential Equations, 2013, 49 : 79 - 87
  • [27] Positive solutions for the singular p-laplace equation
    Agarwal, RP
    Lu, HS
    O'Regan, D
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (04): : 1207 - 1220
  • [28] On global solutions of the radial p-Laplace equation
    Kon'kov, Andrej A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3437 - 3451
  • [29] Regularity Theory for Mixed Local and Nonlocal Parabolic p-Laplace Equations
    Fang, Yuzhou
    Shang, Bin
    Zhang, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [30] HOLDER REGULARITY FOR MIXED LOCAL AND NONLOCAL p-LAPLACE PARABOLIC EQUATIONS
    Shang, Bin
    Zhang, Chao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 5817 - 5837