On the second-order regularity of solutions to the parabolic p-Laplace equation

被引:0
|
作者
Yawen Feng
Mikko Parviainen
Saara Sarsa
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Beihang University,School of Mathematical Science
[3] University of Helsinki,Department of Mathematics and Statistics
来源
关键词
-parabolic functions; Weak solutions; Fundamental inequality; Sobolev regularity; Time derivative; 35K65; 35K67; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that D(Dup-2+s2Du)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$\end{document} exists as a function and belongs to Lloc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}_{\text {loc}}$$\end{document} with s>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>-1$$\end{document} and 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}. The range of s is sharp.
引用
收藏
相关论文
共 50 条
  • [1] On the second-order regularity of solutions to the parabolic p-Laplace equation
    Feng, Yawen
    Parviainen, Mikko
    Sarsa, Saara
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [2] Second-Order Regularity for Parabolic p-Laplace Problems
    Andrea Cianchi
    Vladimir G. Maz’ya
    The Journal of Geometric Analysis, 2020, 30 : 1565 - 1583
  • [3] Second-Order Regularity for Parabolic p-Laplace Problems
    Cianchi, Andrea
    Maz'ya, Vladimir G.
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1565 - 1583
  • [4] A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
    Yawen Feng
    Mikko Parviainen
    Saara Sarsa
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [5] A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
    Feng, Yawen
    Parviainen, Mikko
    Sarsa, Saara
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (07)
  • [6] Regularity of solutions of the parabolic normalized p-Laplace equation
    Hoeg, Fredrik Arbo
    Lindqvist, Peter
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 7 - 15
  • [7] Optimal second-order regularity for the p-Laplace system
    Cianchi, Andrea
    Maz'ya, Vladimir G.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 41 - 78
  • [8] Improved regularity for the parabolic normalized p-Laplace equation
    Pêdra D. S. Andrade
    Makson S. Santos
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [9] Improved regularity for the parabolic normalized p-Laplace equation
    Andrade, Pedra D. S.
    Santos, Makson S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [10] BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION
    Avelin, Benny
    Kuusi, Tuomo
    Nystrom, Kaj
    ANALYSIS & PDE, 2019, 12 (01): : 1 - 42