On the second-order regularity of solutions to the parabolic p-Laplace equation

被引:2
|
作者
Feng, Yawen [1 ,2 ]
Parviainen, Mikko [1 ]
Sarsa, Saara [3 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
[2] Beihang Univ, Sch Math Sci, Shahe Higher Educ Pk South Third St 9, Beijing 102206, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, POB 68,Pietati Kalmin Katu 5, Helsinki 00014, Finland
关键词
p-parabolic functions; Weak solutions; Fundamental inequality; Sobolev regularity; Time derivative; EQUIVALENCE; GRADIENT;
D O I
10.1007/s00028-022-00760-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that D(vertical bar Du vertical bar(p-2+s/2) Du) exists as a function and belongs to L-loc(2) with s > -1 and 1 < p < infinity. The range of s is sharp.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On the second-order regularity of solutions to the parabolic p-Laplace equation
    Yawen Feng
    Mikko Parviainen
    Saara Sarsa
    Journal of Evolution Equations, 2022, 22
  • [2] Second-Order Regularity for Parabolic p-Laplace Problems
    Andrea Cianchi
    Vladimir G. Maz’ya
    The Journal of Geometric Analysis, 2020, 30 : 1565 - 1583
  • [3] Second-Order Regularity for Parabolic p-Laplace Problems
    Cianchi, Andrea
    Maz'ya, Vladimir G.
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1565 - 1583
  • [4] A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
    Yawen Feng
    Mikko Parviainen
    Saara Sarsa
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [5] A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
    Feng, Yawen
    Parviainen, Mikko
    Sarsa, Saara
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (07)
  • [6] Regularity of solutions of the parabolic normalized p-Laplace equation
    Hoeg, Fredrik Arbo
    Lindqvist, Peter
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 7 - 15
  • [7] Optimal second-order regularity for the p-Laplace system
    Cianchi, Andrea
    Maz'ya, Vladimir G.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 41 - 78
  • [8] Improved regularity for the parabolic normalized p-Laplace equation
    Pêdra D. S. Andrade
    Makson S. Santos
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [9] Improved regularity for the parabolic normalized p-Laplace equation
    Andrade, Pedra D. S.
    Santos, Makson S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [10] BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION
    Avelin, Benny
    Kuusi, Tuomo
    Nystrom, Kaj
    ANALYSIS & PDE, 2019, 12 (01): : 1 - 42