On the second-order regularity of solutions to the parabolic p-Laplace equation

被引:2
|
作者
Feng, Yawen [1 ,2 ]
Parviainen, Mikko [1 ]
Sarsa, Saara [3 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
[2] Beihang Univ, Sch Math Sci, Shahe Higher Educ Pk South Third St 9, Beijing 102206, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, POB 68,Pietati Kalmin Katu 5, Helsinki 00014, Finland
关键词
p-parabolic functions; Weak solutions; Fundamental inequality; Sobolev regularity; Time derivative; EQUIVALENCE; GRADIENT;
D O I
10.1007/s00028-022-00760-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that D(vertical bar Du vertical bar(p-2+s/2) Du) exists as a function and belongs to L-loc(2) with s > -1 and 1 < p < infinity. The range of s is sharp.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A universal bound for radial solutions of the quasilinear parabolic equation with p-Laplace operator
    Zhang, Zhengce
    Li, Zhenjie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 125 - 134
  • [22] Lyapunov stability results for the parabolic p-Laplace equation
    Cristofaro, Andrea
    Giambo, Roberto
    Giannoni, Fabio
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 3001 - 3006
  • [23] Finite difference schemes for the parabolic p-Laplace equation
    del Teso F.
    Lindgren E.
    SeMA Journal, 2023, 80 (4) : 527 - 547
  • [24] Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains
    Ebmeyer, C
    Liu, WB
    Steinhauer, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 353 - 374
  • [25] Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient
    Bohner, Martin
    Li, Tongxing
    APPLIED MATHEMATICS LETTERS, 2014, 37 : 72 - 76
  • [26] Regularity of solutions of boundary value problems for a second-order parabolic equation in weighted Hölder spaces
    M. F. Cherepova
    Differential Equations, 2013, 49 : 79 - 87
  • [27] Positive solutions for the singular p-laplace equation
    Agarwal, RP
    Lu, HS
    O'Regan, D
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (04): : 1207 - 1220
  • [28] On global solutions of the radial p-Laplace equation
    Kon'kov, Andrej A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3437 - 3451
  • [29] Regularity Theory for Mixed Local and Nonlocal Parabolic p-Laplace Equations
    Fang, Yuzhou
    Shang, Bin
    Zhang, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [30] HOLDER REGULARITY FOR MIXED LOCAL AND NONLOCAL p-LAPLACE PARABOLIC EQUATIONS
    Shang, Bin
    Zhang, Chao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 5817 - 5837