Spectral Radii of Large Non-Hermitian Random Matrices

被引:0
|
作者
Tiefeng Jiang
Yongcheng Qi
机构
[1] University of Minnesota,School of Statistics
[2] University of Minnesota Duluth,Department of Mathematics and Statistics
来源
关键词
Spectral radius; Determinantal point process; Eigenvalue; Independence; Non-Hermitian random matrix; Extreme value; 15B52; 60F99; 60G55; 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
By using the independence structure of points following a determinantal point process, we study the radii of the spherical ensemble, the truncation of the circular unitary ensemble and the product ensemble with parameters n and k. The limiting distributions of the three radii are obtained. They are not the Tracy–Widom distribution. In particular, for the product ensemble, we show that the limiting distribution has a transition phenomenon: When k/n→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k/n\rightarrow 0$$\end{document}, k/n→α∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k/n\rightarrow \alpha \in (0,\infty )$$\end{document} and k/n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k/n\rightarrow \infty $$\end{document}, the liming distribution is the Gumbel distribution, a new distribution μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and the logarithmic normal distribution, respectively. The cumulative distribution function (cdf) of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the infinite product of some normal distribution functions. Another new distribution ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is also obtained for the spherical ensemble such that the cdf of ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is the infinite product of the cdfs of some Poisson-distributed random variables.
引用
收藏
页码:326 / 364
页数:38
相关论文
共 50 条
  • [21] New applications of non-Hermitian random matrices
    Zabrodin, A
    [J]. ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S851 - S861
  • [22] Local laws for non-Hermitian random matrices
    F. Götze
    A. A. Naumov
    A. N. Tikhomirov
    [J]. Doklady Mathematics, 2017, 96 : 558 - 560
  • [23] New Applications of Non-Hermitian Random Matrices
    A. Zabrodin
    [J]. Annales Henri Poincaré, 2003, 4 : 851 - 861
  • [24] Edge universality for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 1 - 28
  • [25] Spectral rigidity of non-Hermitian symmetric random matrices near the Anderson transition
    Huang, Yi
    Shklovskii, B., I
    [J]. PHYSICAL REVIEW B, 2020, 102 (06)
  • [26] Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties
    Hernández-Sánchez, M.
    Tapia-Labra, G.
    Méndez-Bermúdez, J.A.
    [J]. Physical Review E, 2024, 110 (04)
  • [27] Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices
    Ma, Yutao
    Wang, Siyu
    [J]. FORUM MATHEMATICUM, 2024,
  • [28] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [29] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113
  • [30] Non-Hermitian random matrices and integrable quantum Hamiltonians
    Akuzawa, T
    Wadati, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) : 1583 - 1588