Edge universality for non-Hermitian random matrices

被引:29
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [1 ]
Schroeder, Dominik [2 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Swiss Fed Inst Technol, Inst Theoret Studies, Clausiusstr 47, CH-8092 Zurich, Switzerland
关键词
Ginibre ensemble; Universality; Circular law; Girko's formula; EIGENVALUE STATISTICS; BULK UNIVERSALITY; SPECTRAL-RADIUS; REAL; ENSEMBLES; DISTRIBUTIONS;
D O I
10.1007/s00440-020-01003-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy-Widom distribution at the spectral edges of the Wigner ensemble.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Edge universality for non-Hermitian random matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Probability Theory and Related Fields, 2021, 179 : 1 - 28
  • [2] Universality classes of non-Hermitian random matrices
    Hamazaki, Ryusuke
    Kawabata, Kohei
    Kura, Naoto
    Ueda, Masahito
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [3] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [4] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [5] Universal hard-edge statistics of non-Hermitian random matrices
    Xiao, Zhenyu
    Shindou, Ryuichi
    Kawabata, Kohei
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [6] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [7] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [8] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [9] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105
  • [10] Local Laws for Non-Hermitian Random Matrices
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 558 - 560