Edge universality for non-Hermitian random matrices

被引:29
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [1 ]
Schroeder, Dominik [2 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Swiss Fed Inst Technol, Inst Theoret Studies, Clausiusstr 47, CH-8092 Zurich, Switzerland
关键词
Ginibre ensemble; Universality; Circular law; Girko's formula; EIGENVALUE STATISTICS; BULK UNIVERSALITY; SPECTRAL-RADIUS; REAL; ENSEMBLES; DISTRIBUTIONS;
D O I
10.1007/s00440-020-01003-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy-Widom distribution at the spectral edges of the Wigner ensemble.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [31] Characteristic Polynomials of Sparse Non-Hermitian Random Matrices
    Afanasiev, Ievgenii
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (01)
  • [32] Quaternionic R transform and non-Hermitian random matrices
    Burda, Zdzislaw
    Swiech, Artur
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [33] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):
  • [34] Non-Hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk
    G. M. Cicuta
    M. Contedini
    L. Molinari
    Journal of Statistical Physics, 2000, 98 : 685 - 699
  • [35] Non-Hermitian tridiagonal random matrices and returns to the origin of a random walk
    Cicuta, GM
    Contedini, M
    Molinari, L
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 685 - 699
  • [36] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [37] Analytic approach for the number statistics of non-Hermitian random matrices
    Perez Castillo, Isaac
    Guzman-Gonzalez, Edgar
    Ramos Sanchez, Antonio Tonatiuh
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [38] Rate of convergence for products of independent non-Hermitian random matrices
    Jalowy, Jonas
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [39] Non-Hermitian random matrices and the Calogero-Sutherland model
    Shukla, P
    PHYSICAL REVIEW LETTERS, 2001, 87 (19)
  • [40] Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution
    Neri, I.
    Metz, F. L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)