PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES

被引:1
|
作者
O'Rourke, S. [1 ]
Williams, N. [2 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA
关键词
random matrix; independent and identically distributed matrices; spectral statistic; linear eigenvalue statistics; rate of convergence; circular law; Wasserstein distance; CIRCULAR LAW; GAUSSIAN FLUCTUATIONS; UNIVERSALITY; PRODUCTS;
D O I
10.1137/S0040585X97T991179
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For an n x n independent-entry random matrix X-n with eigenvalues lambda(1), ... , lambda(n), the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118-2143] asserts that the fluctuations of the linear eigenvalue statistics Sigma(n)(i=1) f(lambda(i)) converge to a Gaussian distribution for sufficiently nice test functions f. We study the fluctuations of Sigma(n-K)(i=1) f(lambda(i)), where K randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when K is fixed as well as for the case when K tends to infinity with n. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93-117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of X-n to the circular law in Wasserstein distance, which may be of independent interest.
引用
收藏
页码:613 / 632
页数:20
相关论文
共 50 条
  • [1] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (04) : 613 - 632
  • [2] Central Limit Theorem for Linear Eigenvalue Statistics of Non-Hermitian Random Matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (05) : 946 - 1034
  • [3] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [4] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [5] Analytic approach for the number statistics of non-Hermitian random matrices
    Perez Castillo, Isaac
    Guzman-Gonzalez, Edgar
    Ramos Sanchez, Antonio Tonatiuh
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [6] Eigenvalue Outliers of Non-Hermitian Random Matrices with a Local Tree Structure
    Neri, Izaak
    Metz, Fernando Lucas
    PHYSICAL REVIEW LETTERS, 2016, 117 (22)
  • [7] Eigenvalue repulsion and eigenvector localization in sparse non-Hermitian random matrices
    Zhang, Grace H.
    Nelson, David R.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [8] Universal hard-edge statistics of non-Hermitian random matrices
    Xiao, Zhenyu
    Shindou, Ryuichi
    Kawabata, Kohei
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [9] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [10] On the linear statistics of Hermitian random matrices
    Chen, Y
    Lawrence, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04): : 1141 - 1152