PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES

被引:1
|
作者
O'Rourke, S. [1 ]
Williams, N. [2 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA
关键词
random matrix; independent and identically distributed matrices; spectral statistic; linear eigenvalue statistics; rate of convergence; circular law; Wasserstein distance; CIRCULAR LAW; GAUSSIAN FLUCTUATIONS; UNIVERSALITY; PRODUCTS;
D O I
10.1137/S0040585X97T991179
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For an n x n independent-entry random matrix X-n with eigenvalues lambda(1), ... , lambda(n), the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118-2143] asserts that the fluctuations of the linear eigenvalue statistics Sigma(n)(i=1) f(lambda(i)) converge to a Gaussian distribution for sufficiently nice test functions f. We study the fluctuations of Sigma(n-K)(i=1) f(lambda(i)), where K randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when K is fixed as well as for the case when K tends to infinity with n. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93-117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of X-n to the circular law in Wasserstein distance, which may be of independent interest.
引用
收藏
页码:613 / 632
页数:20
相关论文
共 50 条
  • [21] On delocalization of eigenvectors of random non-Hermitian matrices
    Lytova, Anna
    Tikhomirov, Konstantin
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 465 - 524
  • [22] Universality classes of non-Hermitian random matrices
    Hamazaki, Ryusuke
    Kawabata, Kohei
    Kura, Naoto
    Ueda, Masahito
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [23] New applications of non-Hermitian random matrices
    Zabrodin, A
    ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S851 - S861
  • [24] Edge universality for non-Hermitian random matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Probability Theory and Related Fields, 2021, 179 : 1 - 28
  • [25] Local laws for non-Hermitian random matrices
    F. Götze
    A. A. Naumov
    A. N. Tikhomirov
    Doklady Mathematics, 2017, 96 : 558 - 560
  • [26] New Applications of Non-Hermitian Random Matrices
    A. Zabrodin
    Annales Henri Poincaré, 2003, 4 : 851 - 861
  • [27] ON THE VARIANCE OF LINEAR STATISTICS OF HERMITIAN RANDOM MATRICES
    Min, Chao
    Chen, Yang
    ACTA PHYSICA POLONICA B, 2016, 47 (04): : 1127 - 1146
  • [28] Edge universality for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 1 - 28
  • [29] Singular-Value Statistics of Non-Hermitian Random Matrices and Open Quantum Systems
    Kawabata, Kohei
    Xiao, Zhenyu
    Ohtsuki, Tomi
    Shindou, Ryuichi
    PRX QUANTUM, 2023, 4 (04):
  • [30] Thin structure of eigenvalue clusters for non-Hermitian Toeplitz matrices
    Tyrtyshnikov, EE
    Zamarashkin, NL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 292 (1-3) : 297 - 310